An Equilibrium Model of the African HIV/AIDS Epidemic
Jeremy Greenwood, Philipp Kircher, Cezar Santos, and Michèle Tertilt
Working Paper No. 601
May 2017
An Equilibrium Model of the African HIV/AIDS Epidemic*

Jeremy Greenwood Philipp Kircher Cezar Santos Michèle Tertilt

April 2017

Abstract

Eleven percent of the Malawian population is HIV infected. Eighteen percent of sexual encounters are casual. A condom is used one quarter of the time. To analyze the Malawian epidemic, a choice-theoretic general equilibrium search model is constructed. In the developed framework, people select between different sexual practices while knowing the inherent risk. The calibrated model is used to study several policy interventions. The analysis suggests that the efficacy of public policy depends upon the induced behavioral changes and equilibrium effects. The framework thus complements the insights provided by epidemiological studies and small-scale field experiments.

Keywords: circumcision, condoms, disease transmission, epidemiological studies, HIV/AIDS, homo economicus, Malawi, marriage, policy intervention, search, small field experiments, STDs, sex markets

*Affiliations: Greenwood; University of Pennsylvania; Kircher, EUI and University of Edinburgh; Santos, FGV/EPGE; Tertilt, University of Mannheim. Address all correspondence to Michèle Tertilt at tertilt@uni-mannheim.de. We thank Ufuk Ackigkit, Marco Basetto, Paco Buera, Isabel Correia, Mariacristina de Nardi, Pascaline Dupas, Pedro Ferreira, Erik Hurst, Olga Itenberg, Greg Kaplan, Katja Kaufmann, Corinne Low, Robert Shimer, Nancy Stokey, Alessandra Voena, Mark Wright and seminar audiences at numerous institutions for helpful comments. Financial support from NSF grant SES-0748889, ERC grant SH1-313719, and the Alfred P. Sloan Foundation is gratefully acknowledged. Michèle Tertilt thanks the Becker-Friedman Institute at the University of Chicago for their hospitality during Fall 2016 when large parts of this project were completed. Last but not least, Vera Molitor, Luciene Pereira, Xiaodi Wang, Xue Zhang and Guilherme Zimmermann provided excellent research assistance.
1 Introduction

HIV/AIDS is a major cause of death, currently killing about 1.1 million people worldwide each year. The number of new infections is even higher than 2 million, suggesting an even more severe problem in the future. The most affected continent is Africa, which hosts about two thirds of all HIV/AIDS infected people. Within Africa most transmissions occur through heterosexual sex. Furthermore, the majority of the HIV-positive population is female, compared to less than one third in most developed countries.

A natural question is what can and should be done to prevent the disease. Several policies have been at the center of discussion – anti retroviral therapy (ART) has been developed to keep infected people alive longer but also to reduce their infectiousness to others. The World Health Organization advocates large scale male circumcision. Treating other sexually transmitted diseases (STDs) has been advocated as well, and research is under way to find a suitable vaccine. Others advocate the “ABC approach” – Abstention, Being faithful and Condom use.

The overall effect of these approaches depends not only on their medical efficacy, but also on the conduct of the population: A treatment that has been medically shown to reduce HIV transmission might be less effective if individuals start engaging in more risky sexual practices. This behavioral response gets amplified in equilibrium since less infections of others reduces the negative consequences of risky sexual practices further. The idea that an endogenous response by the population could reduce policy effectiveness has long been recognized in the theoretical disease transmission literature (see Philipson and Posner (1993)). In the most extreme case behavioral adjustment could be so large that a policy backfires, leading to more HIV (as in Kremer (1996)). Yet, just how much endogenous reactions might quantitatively reduce the effectiveness of interventions or even negate them has not been assessed to date. In fact, existing theoretical models are not designed for a quantitative assessment. Quantitatively accounting for this behavioral channel seems prudent so as to not overstate the likely effectiveness of policies, and this paper proposes to fill this gap.

The main building block is a novel computational choice-theoretic equilibrium
model of sexual behavior. The model features several margins of risky sexual behavior with two goals explicitly in mind: 1) to capture aspects of choice that are particularly relevant to HIV transmission, and 2) to use them to match against existing data - an aspect that was not possible in previous theoretical work.\footnote{The economics literature on HIV transmission is small. The discussion in Philipson and Posner (1993) is mostly verbal. The seminal theory work in Kremer (1996) abstracts from important margins such as gender asymmetry, condom use and timing considerations. Similar approaches feature in recent theoretical work on general disease transmission and decision-making, without focus on the specifics of HIV (e.g., Klein et al. (2007), Fenichel et al. (2011), Toxvaerd (2012)). An exception is Magruder (2011) who builds a Jovanovic (1979) style matching model of marital partner search and HIV, but abstracts from condom use and equilibrium effects; in his analysis as choices are not affected by the level of the disease in society. While the focus here is on the disease itself, several people have analyzed the importance of HIV/AIDS for development (Young 2005; Santaeulalia-Llopis 2008).}

In the tradition of \textit{homo economicus}, each individual in the model rationally chooses their sexual behavior to maximize discounted life-time utility. Specifically, people choose how hard to search for a sexual partner. They can search in three different “markets” or “meeting places” for three different types of relationships – long term, casual sex using condoms, and casual unprotected sex. This market structure conveniently eliminates any problem with differences in interests between partners: they have the same desires when they meet in the same market. Finding a partner generates utility from sexual behavior. Marriage has the additional benefit of continued interaction without the need to search again. Searching in a market has both a convex effort cost and the cost of possibly contracting HIV. In line with the data, transmission rates differ according to gender, condom usage, ART availability, and male circumcision. Crucially, when agreeing to sex, people do not know whether their partner is infected, treated or circumcised, but they rationally recognize that some of these markets will be (endogenously) riskier than others.\footnote{This echoes a theoretical point already made by Kremer (1996) that endogenous sorting can render sex in marriage safer than casual sex.}

Men and women feature separately in the model. To capture heterogeneity in society, the degree of patience is allowed to vary across individuals, which induces different people to weigh the risk of sexual behavior differently. As people age, they become on average more patient. Men may be circumcised or not. People are endogenously heterogenous in whether they are healthy or HIV-infected
(with or without symptoms). In the presence of ART, infected people will further differ by whether or not they are being treated.

A stationary equilibrium is solved for. In equilibrium, each market is characterized by its endogenous riskiness and by a transfer that one partner makes to the other. These transfers clear the market and depend on the gender ratio. Despite its parsimony, the presence of multiple markets with adverse selection renders the model too complicated for analytical results. Instead a parameterized version of the model is used for quantitative analysis. The numerical benchmark is calibrated to match key moments of HIV and sexual behavior in Malawi. The calibration matches most target moments well, even though the model is sparse on gender differences. It also captures patterns in non-targeted life-cycle moments.

Policy insights and further support for the model come from the study of two policies aimed at reducing transmission risk: male circumcision and the treatment of other STDs. Medical research attributes a reduction in transmission risk to both interventions. The calibrated model predicts that both are effective in curbing HIV prevalence. The beneficial effects of reduced HIV transmission powerfully accumulate in equilibrium and dominate the (nevertheless non-trivial) behavioral adjustments going in the opposite direction.

These interventions also allow for further assessment of the model and show its ability to reconcile some outstanding puzzles in the literature. First, for circumcision, findings from small scale field experiments are used to calibrate the reduction in transmission risk for an individual. These studies have observed changes in the sexual behavior of treated individuals, as is also found here. If one just applied the reduced transmission risk and behavioral change at the individual level without accounting for the spillover effects on their partners, the HIV rate would only be moderately affected by circumcision. Yet in cross-country data - which serve as the next-best assessment in lieu of large scale circumcision experiments - one sees large changes in HIV rate with respect to the number of circumcised males. At the country level, equilibrium forces kick in as not only individuals but also their partners are affected. The model replicates the (non-targeted) cross-country evidence on circumcision, yielding credibility to the elasticities that the model produces. For STDs one of the puzzling effects is that medical research indicates that effects should be positive, but most field experiments do not find
effects. This absence of effects is reconciled in a small scale non-equilibrium version of the model: the lack of compounding and the additional risk-taking offset most effects.

ART was introduced in Malawi in 2005 and is also examined here. By 2014 about 50% of HIV infected individuals were on ART. Given the fall in the HIV rate at the time, the Malawian government argued that the ART campaign has been a success. The results indicate that a causal connection is unlikely. ART is a complex policy. By treating the sick, infected people live longer and have more time to infect others. Moreover, being sick is no longer perceived as such a bad event and hence healthy people engage in more risky behavior. Even though the treated are less infectious to others, the former effects may dominate and HIV may actually rise. The quantitative results show that whether ART reduces or increases the HIV rate is a function of the fraction of people treated. When less than 50% of the infected are treated, the two effects roughly cancel out, and the HIV rate is largely unaffected. Only when more than half of the infected are treated, the reduced infectiousness becomes powerful enough to decrease the overall HIV rate.

This paper focuses mainly on “hard” interventions that directly target disease transmission. An intermediate intervention is one component of the ABC approach. Suppose one could increase the utility from condom usage, either technologically by improving their quality and comfort or through soft interventions that reduce their stigma. The simulations suggest that better condoms have a potential to backfire. People would use them, but they would in parallel increase their sexual activity, which could lead to an increase in the HIV rate.

This work ties in with two strands of literature. The epidemiological literature on disease transmission in general, and HIV in particular, is large, but tends not to model decision-making and take sexual behavior as exogenous. However, sev-

\(^3\) Acceptability of condoms is a major issue, as reviewed in the case of South Africa in Beksin ska, Smit, and Mantell (2012). They cite studies that attribute low acceptability to a number of hard technical problems such as “comfort and breakage” and “unpleasant smell”, but also to soft problems of negative attitudes due to stigmatism because of the link to STDs.

\(^4\) The discussion of other purely soft interventions aimed not at the underlying transmission channel but at changing attitudes (e.g. towards marriage) are relegated to the companion note; see Greenwood et al. (2017).
eral studies suggest that people react to a higher presence of HIV/AIDS by adjusting several aspects of their sexual behavior [Wellings et al. (1994)]. One contribution of the present paper is providing a way of accounting for the adverse incentives for individuals to increase their risky practices. It thus provides a more cautious view on the effectiveness of interventions. Viewed through the lens of the model, omitting behavioral adjustment would lead to limited bias in the case of circumcision and would substantially overstate the effectiveness of treating STDs and of ART. The workhorse epidemiological model of disease transmission is the susceptible-infected (SI) model with random mixing; see, e.g., Anderson and May (1992). In such a model people are either infected or susceptible. If a person is infected he transmits the disease to susceptible (non-infected) people until he leaves the sexually active population. In models of HIV/AIDS there is no stage of recovery. In these models people encounter other individuals in the population randomly. An interesting contribution is Kremer and Morcom (1998) who introduce selective mixing into an SI model. This idea also features prominently here, but is applied to the type of sexual behavior that a person seeks. The special case where people exclusively meet others who are seeking the same type of relationship allows for selective mixing and avoids modeling any conflict of interest in relationship formation.

The second large literature to which the current work connects is the recent empirical literature that studies HIV/AIDS prevention policies using mostly field experiments (see Padian et al. (2010) for a survey). While some are large in scale, the vast majority treat only a minor fraction of the population. The absence of large randomized studies of male circumcision has been strongly voiced (see e.g., Williams et al. (2006) and De Walque et al. (2012)).

Many papers simulate SI models numerically to forecast the disease incidence or to study the effectiveness of prevention policies. For example, Low-Beer and Stoneburner (1997) use such a model to forecast HIV incidence in East Africa; Johnson (2008) studies the role of other sexually transmitted diseases for the epidemic; Clark and Eaton (2008) simulate the effectiveness of male circumcision; and Bracher, Santow, and Watkins (2004) study the importance of condoms. By design, none of these studies takes behavioral changes, in response to the reduced transmission risks, into account.

Recovery, and either resistance against further infection, or the possibility of reinfection, are explicitly modeled for other infectious diseases. See Hethcote (2000) for a comprehensive overview of the mathematical modeling of infectious disease.

For examples of large scale investigations, several broad studies find that male circumcision lowers the infection risk for males [see, e.g., Auvert et al. (2005) and Gray et al. (2007)], but they
effect of a treatment on an individual, without reshaping the rest of the market. These insights are very valuable and are used in the present study to calibrate some parameters. Such studies are not designed to assess the effects when everyone in a population is treated, as they omit two effects: on the positive side treatment affects not only the individual, but also his/her partners, and their partners, and so on. On the negative side people might become even more reckless if their partners are deemed safer. Through the lens of the model, individual effects are substantially smaller than equilibrium effects for several policies. This positions the current paper as a way to extend insights from small experiments to full equilibrium while being prudent with respect to behavioral responses. The importance of accounting for behavioral responses is indeed another lesson from existing field experiments: Auld (2006) analyzes how risky sexual behavior changes with local infection rates using data from San Francisco in the 1980s and finds large elasticities. Lakdawalla, Sood, and Goldman (2006) study the effects of ART and find an increase in risky sexual behavior in the U.S. Dupas (2011) shows in a randomized field experiment in Kenya that teenage girls who are given information about the HIV status of different groups of men respond by shifting sexual behavior to the lower risk groups.

A caveat is in order before proceeding. Research using computational general equilibrium models to assess the implications that interventions might have on the spread of HIV/AIDS (or other diseases) is in its infancy. Overall, this research program aims to develop tools to aid researchers and practitioners and highlights areas where further and more in-depth research should be conducted.

The paper is organized as follows. Section 2 provides information on sexual behavior and HIV/AIDS in Malawi. Section 3 sets up the model and defines the equilibrium. Section 4 describes the benchmark calibration. Section 5 presents the results of the policy experiments. Section 6 offers some conclusions.

8 Other insights that have emerged in the context of HIV are: testing is not a very cost-effective prevention policy in a randomized field experiment in rural Malawi (Thornton (2008)); HIV/AIDS information campaigns have a larger impact on more educated people (De Walque (2007), but see also the analysis in Iorio and Santaeulalia-Llopis (2011)); non-financial incentives are a good motivator to induce hairdressers to also sell condoms as a prevention policy (Ashraf, Bandiera, and Jack (2013)).
2 Families, Sexual Behavior, and HIV/AIDS in Malawi

The Republic of Malawi serves as a focal country to which the analysis is applied. Therefore, this section briefly describes some information on the HIV/AIDS epidemic in Malawi, together with details about sexual behavior and family life. This background will be useful in guiding the modeling choices.

The Republic of Malawi is a country in southeast Africa with a population of 14 million people. Malawi suffers greatly from the HIV/AIDS epidemic.\(^9\) Twelve percent of the adult population is currently infected. This is well above the average within Sub-Saharan Africa (SSA), which has an adult prevalence rate of about 7.2%—see Canning (2006). It is also well below the HIV rate of the most affected countries, such as Botswana with an adult prevalence rate of 37%. The Malawian HIV rate has been roughly constant (ranging between 12-14%) since the mid 1990s, yielding some indication that the disease dynamics have settled into a steady-state.

The principal mode of HIV transmission in Malawi is through heterosexual sex. Mother-to-child transmissions account for about 10% of all new HIV infections. This fact is ignored here. Most people born with HIV die before they reach sexual maturity and therefore do not add to the propagation of HIV. Like in the rest of SSA, more than half of the HIV-infected population in Malawi is female. By contrast two thirds of the infected population is male in the Western world—see World Development Indicators (2009). The HIV rate among adult women is currently about 13%, compared to 10% among men, suggesting important gender differences.

A rational model of HIV only makes sense if people understand what HIV is, are aware of how it gets transmitted, and know how to avoid it. This seems largely to be the case in Malawi. Almost 100% of surveyed Malawians had heard of HIV or AIDS. About 57% of women and 75% of men correctly identified the use of condoms as a means to protect against HIV infection. Finally, an overwhelming majority of adults in Malawi—74% for women and 86% for men—know of a source to get condoms. Finally, Delavande and Kohler (2009) document that

\(^9\)Unless noted otherwise, information on HIV prevalence and patterns of sexual behavior are from the 2004 Demographic and Health Survey’s (DHS) Final Report for Malawi.
people in Malawi are relatively good in assessing their own probability of being infected with HIV.

Sexual behavior conducive to the spread of the disease is relatively common in Malawi. Condoms are used by less than half of all respondents in their last sexual act. It is also considered normal for unmarried people to change partners often, see Undie, Crichton, and Zulu (2007). Furthermore, divorce is relatively common. Reniers (2003) reports that 45% of marriages end in divorce within 20 years. Several other forms of risky behavior will be abstracted from in the paper. For example, the model does not have concurrent relationships, such as extra-marital affairs or polygyny. The model abstracts from concurrent relationships to keep it tractable. Future work should include these phenomena.

The high prevalence of risky behavior does not necessarily imply that people are uninformed or irrational: it is more likely due to the trade-off between increased safety versus less pleasure, see Undie, Crichton, and Zulu (2007). In Malawi, condom use within marriage is essentially non-existent [Chimbiri (2007)]. One reason is that marital sex is often aimed at reproduction. Furthermore, using a condom in marriage may be interpreted as a signal of infidelity. [Bracher, Santow, and Watkins (2004)]. Note also that while using a condom lowers the transmission risk substantially, it does not decrease the risk to zero. Bracher, Santow, and Watkins (2004) cite a study that finds that for new condoms, the average breakage rate is 4%; this rate jumps to 19% for condoms that are 7 years old.

Poulin (2007) documents that money and gift transfers in sexual partnerships are part of the courting practices in Malawi. In addition to an expression of love and commitment, she argues that these transfers are a way of acquiring sex for men and about meeting their financial needs for women. A gift might be in the form of sugar or soap, but also in cash. Transfers are not made directly before or after sex (as with prostitution), however; rather gift giving is an integral part of a relationship. Similar evidence is also given in Swidler and Watkins (2007). The model developed here will allow for such transfers between men and women in sexual relationships.
3 Economic Environment

Imagine a world populated by males and females. Males and females desire relationships with the opposite sex. There are two types of relationships, viz short-term and long-term ones. Within a relationship individuals engage in sex. Sex is risky because of the presence of the HIV/AIDS virus in society. There are two types of sex, protected and unprotected. Protected sex offers a better defense against the transmission of HIV/AIDS across partners. It provides less enjoyment, though. Individuals interested in a short-term relationship must decide what kind of sex they desire. Put simply, they must weigh the extra momentary utility associated with unprotected sex against the increased odds of being afflicted with the HIV/AIDS virus in the future. As motivated in Section 2, sex is always unprotected in long-term relationships. Further, suppose that a person can only engage in one relationship at a time.

Denote the utility from unprotected sex by u and the utility from protected sex by p, with $u > p > 0$. The utility flow in a long-term relationship is $u + l$, where l may be negative. A positive l can be interpreted as a taste for long-term attachment, while a negative l signifies taste for variety in partners. Individuals also realize utility from the consumption of goods. Let this utility be given by $\ln(w)$, where w is consumption (“wealth”). Each period a person receives income in the amount y. There is no borrowing or lending in the economy. An individual discounts the future with a stochastic factor that takes two values, viz $\tilde{\tau}$ and $\tilde{\beta}$ with $\tilde{\tau} < \tilde{\beta}$. Individuals start off life with the low rate $\tilde{\tau}$. This low factor reflects the impatience of youth, which may lead to a predilection to engage in risky behavior. Then, at every period, a person may switch permanently to the high factor with probability η. Additionally, there is a probability δ that an individual dies from natural causes in a period. Thus, the effective discount factors are given by $\tau = \tilde{\tau}(1 - \delta)$ and $\beta = \tilde{\beta}(1 - \delta)$. Finally, a male individual may be circumcised (denote $c = 1$) or not ($c = 0$). A circumcised male is less likely to contract the HIV virus from his sexual partner. The values of l, p, u, y, c, β, and τ may differ across individuals of a given gender. The set of fixed characteristics for a person is denoted by $x = (l, p, u, y, c, \beta, \tau)$, which will be called a person’s type.
People can search for partners in different markets. At the beginning of each period an unattached individual may search for a long-term partner. The odds of finding a partner on the long-term market are denoted by π_l. The individual can pick these odds at an increasing cost in terms of lost utility. These search costs are given by $C_l(\pi_l) = \omega_l[\pi_l/(1/2 - \pi_l)]^{\kappa_l+1}$, where $\kappa_l \geq 0$ and $\omega_l > 0$. Observe that $C(0) = 0$ and $C(1/2) = \infty$. A long-term relationship may break up (at the end of) each period with exit probability ϵ. If the person is unsuccessful at finding a long-term mate s/he then enters the short-term market, where s/he can still engage in sexual behavior for this period. Note that an individual who does not want a long-term relationship can set $\pi_l = 0$. If the person wants a short-term one, then s/he must decide whether to have one involving protected or unprotected sex. Let π_p and π_u represent the odds of finding a partner in the protected and unprotected markets for short-term relationships, which will be choice variables. The cost of searching in each market is given by $C_s(\pi_p)$ and $C_s(\pi_u)$, which have the same functional form as $C_l(\pi_l)$, but where the parameters κ_s and ω_s are allowed to differ from the long-term market. The total cost of searching for a short-term partner will then be $C_s(\pi_p) + C_s(\pi_u)$. An individual will not simultaneously draw a partner on both markets. Since $C_s(1/2) = \infty$, the odds are such that $\pi_p + \pi_u < 1$, and an individual will be abstinent with probability $\pi_a \equiv 1 - \pi_p - \pi_u$. Also, observe that individuals can choose abstinence by picking $\pi_p = \pi_u = 0$.

Given the pervasive evidence on gift giving in the context of sexual relationships (see Section 2), transfers are exchanged for sex. Associated with each market is a transfer payment, z, that is made between the two partners. For the person making the transfer, z will be positive, while it will be negative for the individual receiving it. Think about the people receiving the transfers as supplying relationships on the market, and those paying transfers as demanding them. Interpret the transfer as representing the inputs into a relationship: affection, entertainment, gifts, etc. The magnitude of this transfer is determined in equilibrium. It will depend upon the demand and supply for a given type of relationship by each gender. This will hinge on the utility that each gender realizes from a part-

10 The idea that people can rationally target their search behavior to particular markets is present in many recent theoretical models (e.g. Jacquet and Tan (2007), Eeckhout and Kircher (2010), Gautier, Svarer, and Teulings (2010)).

11 Alternatively, market clearing could be achieved through different meeting probabilities. This should lead to qualitatively similar results.
nership in the various markets and the riskiness of participating in them.

People know their own health status \(\phi \).\(^{12}\) A healthy individual has \(\phi = 1 \). An individual with HIV infection and no antiretroviral therapy (ART) treatment has \(\phi = 0 \). An infected individual who receives treatment has health status \(\phi = t \). All individuals are born healthy. If an individual has sex with a partner of health status \(\hat{\phi} \), then the virus will get transmitted with probability \(1 - \gamma(\hat{\phi}) \), which is trivially zero if the other individual is healthy.\(^{13}\) Similarly, an individual of type \(\phi \) transmits the infection to a healthy partner with probability \(1 - \tilde{\gamma}(\phi) \). Both transmission probabilities can differ by gender. Circumcised men are also less likely to contract the virus compared to non-circumcised individuals. Denote this deflation on transmission probabilities that circumcision provides by \(\chi(c) \), with \(\chi(1) = \chi < 1 \) and \(\chi(0) = 1 \). For women, trivially, \(\chi_f(c) = 1 \). These transmission probabilities are also lower for protected sex than for unprotected sex. People only know their own health status. While they cannot discern the health status of other individuals, they hold correct expectations \(R(\hat{\phi}) \) about the fraction of potential partners of each health status in each market.

If treatment is available, an infected individual obtains ART treatment with probability \(q \). Once in treatment, the individual remains in treatment forever. So the probability of obtaining treatment next period can be summarized as \(Q(t) = 1 \), \(Q(0) = q \), and finally \(Q(1) = 0 \) since healthy individuals do not obtain treatment.

The health status indicator refers to individuals in the early stages of the disease, where it is assumed that their health status is not visible to other people and neither income nor sexual activity is restricted. Individuals transit to the final stages of AIDS with probability \(\alpha_\phi \), where \(\alpha_1 = 0 < \alpha_t < \alpha_0 \) since healthy individuals do not enter the final stage of the disease and treatment prolongs a healthy existence. Assume that a person stricken with final stage HIV/AIDS symptoms engages in no further relationships. Let the remaining lifetime utility for a person with the symptoms of HIV/AIDS be represented by \(A \).\(^{14}\) The probability that a person displaying symptoms dies is \(\delta_2 \). Since a person with HIV/AIDS symp-

\(^{12}\)A previous working paper version carefully explored the evolution of beliefs about the likelihood of being HIV positive in a world where individuals do not immediately observe their health status. We thank the editor for suggesting this simplification.

\(^{13}\)The symbol ‘\(^{\hat{}}\)’ denotes the characteristics of an individual’s partner.

\(^{14}\)Note that \(A \) cannot be too large to assure people prefer being healthy over being sick.
toms engages in no further activity, δ_2 does not appear in the value functions. However, it is relevant for computing the average HIV/AIDS rate in society.

Note that in the framework there is an attrition in the population each period both due to natural death and to HIV/AIDS. This loss is replenished by an inflow each period of newly born males and females. Assume that $\mu(x)$ type-x individuals are born at the beginning of each period. Recall that x denotes the set of permanent characteristics for an individual, namely l, p, u, y, c, β, and t. People also differ by gender. Gender will be suppressed unless it is specifically needed and then it will be represented by the subscript g (for $g = f, m$) attached to a function or variable.

Before proceeding on to the formal analysis some notation will be defined. An individual will be indexed by his health status, ϕ, his current discount factor, d, and his exogenous type x. Let $\tilde{V}^d_r(\phi, x)$ denote the lifetime utility for a person with health ϕ, a discount factor d, β, and an exogenous type x who just found a partner for a relationship of type $r = a, l, p, u$ (abstinent, long-term, short-term protected and short-term unprotected). Similarly, $V^d_r(\phi, x)$ will represent the expected lifetime utility for a person who is currently searching for a partner in a type-r relationship (for $r = l, s$ where s denotes short term), but has not found one yet. The timing of events is summarized in Figure 10 in Appendix A. Attention will now be directed toward the determination of the functions $\tilde{V}^d_r(\phi, x)$ and $V^d_r(\phi, x)$. The focus is on studying a stationary equilibrium for this setting.

3.1 Short-term Relationships

3.1.1 Abstinence

The case of abstinence is the easiest to analyze. Recall that there are young and old individuals that differ in their discount factor. Start with a type-x old person (i.e., with discount factor β), who has failed to match on the short-term sex markets. Thus, he will be abstinent for the current period. Note that the individual’s discount factor will remain high forever. The value function for this person is
given by

\[\tilde{V}_a^\beta(\phi, x) = \ln(y) + \alpha_\phi \beta A + [1 - \alpha_\phi] \beta [Q(\phi)V_i^\beta(t, x) + (1 - Q(\phi))V_i^\beta(\phi, x)]. \]

(1)

The first term on the right hand side covers the flow utility from current consumption. The continuation value depends on whether the person enters the final stages of the disease, which happens at rate \(\alpha_\phi \) and yields a continuation value \(A \) that is discounted. With complementary probability the individual’s continuation value is the discounted value of continuing in their current state or of obtaining treatment. Healthy individuals have a zero probability of entering the final stages of the disease or of obtaining treatment, so their value function reduces simply to \(\tilde{V}_a^\beta(1, x) = \ln(y) + \beta V_i^\beta(1, x) \), where the discount factor already incorporates other sources of death apart from HIV/AIDS.

Next, consider the case of an abstinent young person (with discount factor \(\iota \)). The discount factor may switch next period to the high value, \(\beta \), with probability \(\eta \), or remain at the low one, \(\iota \), with probability \(1 - \eta \). Therefore, the value functions for young individuals retain the same structure as (1), only that all instances of \(\beta \) have to be replaced by \(\iota \) and any value function \(V_i^\beta(\phi, x) \) on the right hand side have to be replaced by the expected value \(\eta V_i^\beta(\phi, x) + (1 - \eta)V_i^\iota(\phi, x) \). This holds for all value functions throughout. Therefore, focus will be placed on the value functions for old individuals, and the adjustments for young individuals are summarized in Appendix D.1.

3.1.2 Sexual Relationships

Now consider short-term relationships. Here individuals have to take into account both the transfer in each market, as well as the adverse selection of types they might encounter. Additionally, they also experience the utility from sexual activity.

Again, focus on an individual with high discount factor. If \(s = p \) then the person will use a condom and enjoy utility \(p \) from sex. If \(s = u \) the individual will enjoy \(u \) from unprotected sex. Define the indicator function \(I(s) \) to return a value of 1, when \(s = p \), and a value of 0, otherwise. Thus, the joy from a short-term
sexual relationship can be written as \(pI(s) + u[1 - I(s)] \). Apart from this addition and from the transfer \(z_s \) in the short-term market, the value function of infected individuals with \(\phi \in \{0, t\} \) looks similar to the one in abstinence:

\[
\tilde{V}_s^\beta(\phi, x) = \ln(y - z_s) + pI(s) + u[1 - I(s)] + \alpha_\phi \beta A \\
+ [1 - \alpha_\phi] \beta [Q(\phi)V_l^\beta(t, x) + (1 - Q(\phi))V_l^\beta(0, x)].
\] (2)

It comprises the utility from current consumption and sexual activity, and the continuation value of either entering the last stages of the disease, or of continuing as an infected or a treated individual.

A healthy individual never enters the last stages without having been in the infected/treated status for a period, but they have to weigh two additional costs of the various sexual activities in terms of their chances of getting infected. First, the transmission risk of catching HIV/AIDS from an infected person differs across markets. Specifically, the transmission risk in the protected market is lower than in the unprotected one. Second, the average level of healthiness in the pool of participants in the two markets will in general differ. The fact that a person desires a short-term sexual relationship that does not use a condom signals something about their past tendencies to engage in risky behavior. For instance, in the market for protected sex the fraction of healthy partners \(R_p(1) \) might be higher than the corresponding fraction \(R_u(1) \) in the market for unprotected sex. The value function for a healthy individual who engages in sex of type \(s = u, p \) is then

\[
\tilde{V}_s^\beta(1, x) = \ln(y - z_s) + pI(s) + u[1 - I(s)] + \beta V_l^\beta(1, x) \left(1 - \sum_\phi R_s(\hat{\phi})(1 - \gamma_s(\hat{\phi}))\chi(c) \right) \\
+ \sum_\phi R_s(\hat{\phi})(1 - \gamma_s(\hat{\phi}))\chi(c) \beta \left[qV_l^\beta(t, x) + (1 - q)V_l^\beta(0, x) \right].
\] (3)

It entails the flow utility of consumption and sex and the continuation value. The individual gets infected with probability \(\sum_\phi R_s(\hat{\phi})(1 - \gamma_s(\hat{\phi}))\chi(c) \). With complementary probability, the individual remains healthy, in which case he obtains the corresponding continuation utility. If the individual contracts the virus, he has the immediate probability \(q \) of getting treated and obtain a treated person’s continuation utility, while continuation as an untreated infected individual arises with complementary probability \(1 - q \).
Last, upon entering the market for short-term relationships a person must decide how much effort to expend searching in each market; that is, he must choose \(\pi_p \) and \(\pi_u \). This is done in accordance with the following problem:

\[
V^d_s(\phi, x) = \max_{0 \leq \pi^d_u, \pi^d_p \leq 1, \pi^d_p + \pi^d_u \leq 1} \{ \pi^d_p \bar{V}^d_p(\phi, x) + \pi^d_u \bar{V}^d_u(\phi, x) + (1 - \pi^d_p - \pi^d_u) \bar{V}^d_a(\phi, x) \}
\]

for \(d = \iota, \beta \).

The function \(V^d_s(\phi, x) \) gives the ex-ante value for a type-\(x \) individual, with status \(\phi \), of entering the market for short-term sex. The solution for search effort is represented by the function \(\pi^d_s = \Pi^d_s(\phi, x) \), for \(s = p, u \).

3.2 Long-term Relationships

Imagine a person with high discount factor who is currently in a long-term relationship. In a long-term relationship there are no choices to make: there are no affairs, all sex is unprotected, and the partnership endures until some form of exogenous breakup occurs.

To understand the value of a continuing relationship in which an individual of health status \(\phi \) and circumcision type \(c \) is married to a partner of status \(\hat{\phi} \) and circumcision type \(\hat{c} \), it is important to derive the probability \(\Upsilon(\phi', \hat{\phi}'|\phi, \hat{\phi}, c, \hat{c}) \) that the pair enters next period together with status \(\phi' \) and \(\hat{\phi}' \). A pair that is currently healthy will stay healthy, so that \(\Upsilon(1, 1|1, 1, c, \hat{c}) = 1 \) for all \((c, \hat{c}) \). If one of the individuals is healthy, but the other one is either treated or infected, the transition probabilities have to reflect both the probability of infection and the possible change in treatment status. The following equations show the transitions when the individual is healthy and the partner is infected or treated (\(\hat{\phi} = 0, t \)). The symmetric situations in which the partner is healthy but the individual is infected or treated are presented in Appendix D.2.
\[
\begin{align*}
\Upsilon(1, t|1, \hat{\phi}, c, \hat{c}) &= [1 - (1 - \gamma_u(\hat{\phi}))\chi(c)]Q(\hat{\phi}); \\
\Upsilon(1, 0|1, \hat{\phi}, c, \hat{c}) &= [1 - (1 - \gamma_u(\hat{\phi}))\chi(c)][1 - Q(\hat{\phi})]; \\
\Upsilon(0, t|1, \hat{\phi}, c, \hat{c}) &= (1 - \gamma_u(\hat{\phi}))\chi(c)(1 - q)Q(\hat{\phi}); \\
\Upsilon(0, 0|1, \hat{\phi}, c, \hat{c}) &= (1 - \gamma_u(\hat{\phi}))\chi(c)(1 - q)[1 - Q(\hat{\phi})]; \\
\Upsilon(t, t|1, \hat{\phi}, c, \hat{c}) &= (1 - \gamma_u(\hat{\phi}))\chi(c)qQ(\hat{\phi}); \\
\Upsilon(t, 0|1, \hat{\phi}, c, \hat{c}) &= (1 - \gamma_u(\hat{\phi}))\chi(c)q[1 - Q(\hat{\phi})]; \\
\end{align*}
\]

The last term gives the chance that the partner gets treated \((Q(\hat{\phi}))\) or not \((1 - Q(\hat{\phi}))\). The first term captures the chance that the individual remains healthy \([1 - (1 - \gamma_u(\hat{\phi}))\chi(c)]\) or not \((1 - \gamma_u(\hat{\phi}))\chi(c)\). In the latter case, there is a chance of treatment \((q)\) or not \((1 - q)\).

Finally, both partners might be infected \((\phi = 0, t\) and \(\hat{\phi} = 0, t)\), in which case a healthy future is no longer an option and the only question remains whether the future will bring treatment or not, so that

\[
\Upsilon(\phi', \hat{\phi}'|\phi, \hat{\phi}, c, \hat{c}) = \\
\begin{cases}
[1 - Q(\phi)]Q(\hat{\phi}), & \text{for } (\phi', \hat{\phi}') = (0, t); \\
[1 - Q(\phi)]\left[1 - Q(\hat{\phi})\right], & \text{for } (\phi', \hat{\phi}') = (0, 0); \\
Q(\phi)Q(\hat{\phi}), & \text{for } (\phi', \hat{\phi}') = (t, t); \\
Q(\phi)\left[1 - Q(\hat{\phi})\right], & \text{for } (\phi', \hat{\phi}') = (t, 0).
\end{cases}
\]

For all other constellations, \(\Upsilon(\phi', \hat{\phi}'|\phi, \hat{\phi}, c, \hat{c}) = 0\).

Given these transitions, consider an individual of health status \(\phi\) who starts the period matched to a partner of status \(\hat{\phi}\) and circumcision type \(\hat{c}\). Focus on a high discount factor individual for illustration. His continuation utility is

\[
\tilde{V}_l^\beta(\phi, \hat{\phi}, \hat{c}, x) = \ln(y - z_l) + u + I + \alpha_\phi \beta A + (1 - \alpha_\psi)(1 - \epsilon)(1 - \delta)(1 - \alpha_\phi)\beta \sum_{\phi', \hat{\phi}'} \Upsilon(\phi', \hat{\phi}'|\phi, \hat{\phi}, c, \hat{c})\tilde{V}_l^\beta(\phi', \hat{\phi}', \hat{c}, x) \\
+ (1 - \alpha_\phi)\left[1 - (1 - \epsilon)(1 - \delta)(1 - \alpha_\phi)\right]\beta \sum_{\hat{\phi}', \tilde{\phi}'} \Upsilon(\phi', \hat{\phi}'|\phi, \hat{\phi}, c, \hat{c})\tilde{V}_l^\beta(\phi', x).
\]

The first three terms on the first line capture the flow utility from consumption
and sex in long-term relationships. Additionally, with probability α_ϕ the individual develops final stage symptoms which is captured by the last term in the first line. With complementary probability the individual remains either married (second line) or single (third line). Marriage persists if there is no exogeneous breakup (chance $1 - \epsilon$), the partner does not die of natural causes (chance $1 - \delta$) and the partner does not develop symptoms (chance $1 - \alpha_\phi$). In this case the individual obtains the continuation value taking into account the transition probability of health status. With complementary probability, the marriage breaks up and the individual carries his new status as a single into the long-term market.

Since individuals do not know their partner’s health status, the value of being matched in the long-term market for an individual with discount factor $d = \iota, \beta$ is given by the weighted average of possible partners in the long-term market:

$$\tilde{V}^d_i(\phi, x) = \sum_{\hat{\phi}, \hat{c}} R_i(\hat{\phi}, \hat{c})\tilde{V}^d_i(\phi, \hat{\phi}, \hat{c}, x). \quad (8)$$

Note that, unlike short-term relations, in long-term relationships, the relevant fraction $R_i(\hat{\phi}, \hat{c})$ also depends on the circumcision type of the potential partner. This is so because the circumcision type of the spouse matters for the evolution of the marriage and its duration, as can be seen from the probabilities given in (5).

The value of searching in the long-term market for a status/type-$ \phi, x$ person with discount factor d is given by

$$V^d_i(\phi, x) = \max_{\pi^d_i} \left[\pi^d_i \tilde{V}^d_i(\phi, x) + (1 - \pi^d_i)V^d_s(\phi, x) - C(\pi_i) \right], \text{ for } d = \iota, \beta. \quad (9)$$

The solution for search effort, π^d_i, is represented by the function $\pi^d_i = \Pi^d_i(\phi, x)$.

3.3 Stationary Equilibrium

A stationary equilibrium for the developed framework will now be formulated. First, the equilibrium distributions for singles will be specified. Let $S^d(\phi; x)$ represent the (non-normalized) stationary distribution of singles at the beginning of a period. It denotes the measure of singles of type-x that have status ϕ and
discount factor d. Similarly, let $L^d(\phi, \hat{\phi}; x, \widehat{x})$ denote the measure of long-term relationships with status ϕ and $\hat{\phi}$ and types x and \widehat{x}. Given some distributions S and L of singles and married people, the sexual behavior of individuals according to their decision rule $\Pi [\Pi_{g,r}^d = \Pi_{g,r}^d(\phi, x)$ for each status and type] gives rise to a new distribution of singles and married people, which can be described by a mapping T that is characterized fully in Section D.3 of the Appendix. In steady-state the distributions of singles and married people remain constant, and are determined by a fixed point of this operator:

$$(S^\beta, L^\beta, S'^r, L'^r) = T(S^\beta, L^\beta, S'^r, L'^r; \Pi). \hspace{1cm} (10)$$

Next, the expectations over the fraction of types in each market have to be consistent with the aggregation of individual choices in equilibrium. It is now useful to introduce the subscript g (for $g = f, m$) to a function or variable to denote the gender of the person in question. The number of market participants for sexual activity $r (=l, p, u)$, who are of gender g and type-x with status ϕ and discount factor d, is given by

$$M_{g,r}^d(\phi, x) \equiv \begin{cases}
\Pi_{g,r}^d(\phi, x)S_g^d(\phi; x), & \text{if } r = l, \\
[1 - \Pi_{g,r}^d(\phi, x)]\Pi_{g,r}^d(\phi, x)S_g^d(\phi; x), & \text{if } r = p, u.
\end{cases} \hspace{1cm} (11)$$

The number of market participants equals the number of singles times their probability of participating in a particular market. For the short-term market this also entails the probability of not previously finding a long-term partner within the current period. Then the fraction $R_{s,r}(\phi)$ of agents of status ϕ in market s of gender g is given by

$$R_{g,s}(\phi) = \frac{\sum_d \sum_x M_{g,s}^d(\phi, x)}{\sum_d \sum_x \sum_{\phi'} M_{g,s}^d(\phi', x)}, \text{ for all } g \text{ and } s \in \{p, u\}. \hspace{1cm} (12)$$

For the long-term market, the relevant fraction is given by:

$$R_{g,l}(\phi, c) = \frac{\sum_d \sum_x M_{g,l}^d(\phi, x)I(c(x) = c)}{\sum_d \sum_x \sum_{\phi'} M_{g,l}^d(\phi', x)}, \text{ for all } g, \hspace{1cm} (13)$$

where $c(x)$ is a slight abuse of notation that denotes the circumcision status of
the agent that is contained in his or her type x. The function $\mathcal{I}(\cdot)$ is an indicator function that takes the value of 1 if its argument is true. Note that $R_{f,s}(\phi)$ and $R_{f,l}(\phi, c)$ denote the distributions among women, which are relevant for men when determining their odds of getting infected. Similarly, $R_{m,s}(\phi)$ and $R_{m,l}(\phi, c)$ refer to the odds among men, but are relevant for the women when making their decisions.

Market clearing requires that the number of female participants equals the number of male participants in any market:

$$
\sum_d \sum_x \sum_\phi M_{f,s}^d(\phi, x) = \sum_d \sum_x \sum_\phi M_{m,r}^d(\phi, x), \text{ for all } r. \tag{14}
$$

Additionally, a transfer paid by one gender on a market is a transfer earned by the other so that

$$
z_{f,r} + z_{m,r} = 0, \text{ for all } r. \tag{15}
$$

This leads to the following formal definition of equilibrium.

Definition. A stationary equilibrium is described by a set of decision rules for search effort, $\Pi^d_{g,r}(\phi, x)$, a set of transfer payments, $z_{g,r}$, a set of stationary distributions, $S^d_{g}(\phi; x)$ and $L^d(\phi, \bar{\phi}; x, \bar{x})$, and status/type prevalence in each market, $R_{g,s}(\phi)$ and $R_{g,l}(\phi, c)$, for all $d = \{\iota, \beta\}$, $g \in \{f, m\}$, $r \in \{l, p, u\}$, $s \in \{p, u\}$, such that:

1. The decision rules for search intensities, $\Pi^d_{g,r}(\phi, x)$, satisfy the appropriately gender subscripted versions of the generic problems (4) and (9), taking as given transfer payments and HIV/AIDS prevalence rates;
2. The stationary distributions, $S^d_{g}(\phi; x)$ and $L^d(\phi, \bar{\phi}; x, \bar{x})$, solve the appropriately gender subscripted version of (10) using (11);
3. The status/type prevalence for each market, $R_{g,s}(\phi)$ and $R_{g,l}(\phi, c)$, are given by (12) and (13) using (11);
4. The transfer payments, $z_{r,g}$, are such that the markets for all types of relationships clear according to (14). Additionally, the flow of transfers across the genders must balance as specified by (15).
4 Calibration

To address the HIV/AIDS epidemic in Malawi, the model is analyzed numerically. A benchmark simulation is constructed that displays features that are broadly consistent with the Malawian case. In particular, the simulated model has an HIV/AIDS infection rate that corresponds with the Malawian data, a proportion of casual sexual encounters that is approximately the same, and a reasonable fraction of these encounters use a condom.

Interpret a model period as lasting one quarter. Even though the model is set up to allow for heterogeneity along many dimensions, only two are exploited in the application. First, assume that people differ in their discount factor. Second, suppose that men and women have different transmission rates, so that the same level of sexual activity leads to a discrepancy in the HIV rate across genders. Among men, there is one more distinction regarding transmission rates: circumcised men are less likely to contract the virus. This limited degree of heterogeneity economizes on the number of parameters to be specified.

The calibration is conducted in three steps. First, to the extent possible, parameters with direct data analogs are taken from the literature. In particular, all parameters relating directly to the biology of the disease are chosen in this way. Second, the remaining parameters are chosen to match some key observations related to the HIV/AIDS epidemic in Malawi. The data mostly obtains from the 2004 Demographic and Health Survey (DHS) that was conducted in Malawi. Using the micro data from this survey, a number of statistics are computed regarding HIV prevalence rates, sexual behavior, marital status, etc. Finally, the model’s predictions are compared to the data along several non-targeted dimensions. The model performs surprisingly well, which can be interpreted as an additional validity check.

4.1 Parameters Based on Direct Evidence

The most important parameter values for the simulation are those concerning HIV/AIDS. Fortunately, for the most part, these can be taken from the medical
literature. The transmission risk for one-time male unprotected sex is taken to be 4.5 per 1,000. This number falls in the range of estimates reported by a variety of studies. Since couples on average have sex 9 times a month, as reported in Gray et al. (2001), this translates into a quarterly non-transmission risk of $\gamma_n^m = 0.879$. The transmission risk when condoms are used is obviously lower, but protection is far from perfect—Bracher, Santow, and Watkins (2004). Select $\gamma_p^m = 0.96$, corresponding to a 67% efficacy rate, which is in line with Weller (1993) who conducted a meta-analysis of condom efficacy. Assume that circumcised men are 60% less likely to contract the HIV/AIDS virus and set $\chi = 0.4$ accordingly. This is in accord with the improvements reported by Auvert et al. (2005), Bailey et al. (2007) and Gray et al. (2007). Set the fraction of circumcised men to 20% (DHS 2004). Further, for physiological and anatomical reasons, and in accord with the medical evidence, females are assumed to have a higher risk of contracting HIV than males. Nicolosi et al. (1994) reports a risk that is 2.3 times as high for women. However, the range of estimates is wide. On the one extreme, Gray et al. (2001) find no statistically significant difference between transmission rates by gender. On the other extreme, Padian, Shiboski, and Jewell (1991) calculate a factor as high as 20. Assuming that women are 75% more likely to get infected implies a one-time risk of 7.87 per 1,000 for unprotected sex. This delivers a quarterly non-transmission rate of $\gamma_n^f = 0.787$. Using the same gender gap for protected sex yields $\gamma_p^f = 0.929$.

The average time from infection to the outbreak of symptoms is equal to 10 years (DHS 2004). Therefore, let $\alpha = 0.025$; i.e., 40 quarters. The average time from the outbreak of symptoms to death is 2 years (DHS 2004). Thus, pick $\delta_2 = 0.125$; i.e., 8 quarters.

Some other parameters values can also be pinned down using a priori informa-

\footnote{For example, the annual report of the UNAIDS Joint United Programme on HIV/AIDS (2007) gives a range of 2 to 6 per 1,000, depending on whether other STDs are present or not. Baeten et al. (2005) also report a transmission risk of 6 per 1,000. Gray et al. (2001) report a somewhat lower number of 1.1 per 1,000 for Uganda; however, free condoms were distributed as part of the study. Wawer et al. (2005) finds transmission rates as high as 82 per 1,000 during the first few months after infection.}

\footnote{This quarterly rate also is similar in magnitude to the per-partnership transmission rates for Sub-Saharan Africa reported in Oster (2005) and the correction appendix.}

\footnote{Oster (2005) also reports a factor of two in her measures of per-partnership transmission rates.}
tion. Set the quarterly divorce hazard equal to $\epsilon = 0.03$. Bracher, Santow, and Watkins (2004) report that 26.4% of all marriages in Malawi end in divorce within the first five years. Assuming a constant annual divorce hazard, this would imply a quarterly risk of 1.56%. A rate twice this number is used: First, polygyny is fairly common in Malawi, from which the analysis abstracts. Second, extramarital affairs are relatively common as well. Therefore, interpret, for example, a 10-year marriage with one affair as two long-term relationships with a third casual one in between.

The quarterly (non-HIV related) death hazard is taken to be $\delta = 0.006$. A study conducted by the U.S. Census Bureau (2004) reports a life expectancy without HIV of 56.3 years for Malawi. Since the model starts at age 15, the quarterly death hazard is selected to match a life expectancy of 41.3 years. Malawi is a very poor country. Set $y = 320$, which corresponds roughly to quarterly GDP per working age population (note that only about half the population is of working age in Malawi). Table 1 summarizes the preceding paragraphs by listing all parameters that are set a priori.

Table 1: Parameters chosen outside the model

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ^m_u</td>
<td>0.879</td>
<td>12.1% quarterly transmission risk, unprotected sex, uncircumcised men</td>
</tr>
<tr>
<td>γ^m_p</td>
<td>0.96</td>
<td>4% quarterly transmission risk, protected sex, uncircumcised men</td>
</tr>
<tr>
<td>χ</td>
<td>0.4</td>
<td>Circumcised men are 60% less likely to contract the virus</td>
</tr>
<tr>
<td>γ^f_u</td>
<td>0.787</td>
<td>11.3% quarterly transmission risk, unprotected sex, women</td>
</tr>
<tr>
<td>γ^f_p</td>
<td>0.929</td>
<td>7.1% quarterly transmission risk, protected sex, women</td>
</tr>
<tr>
<td>α</td>
<td>0.025</td>
<td>10 years from infection to symptoms</td>
</tr>
<tr>
<td>δ</td>
<td>0.006</td>
<td>6% quarterly death risk</td>
</tr>
<tr>
<td>δ_2</td>
<td>0.125</td>
<td>2 years from symptoms to death</td>
</tr>
<tr>
<td>ϵ</td>
<td>0.03</td>
<td>3% quarterly divorce hazard</td>
</tr>
<tr>
<td>y</td>
<td>320</td>
<td>Quarterly income</td>
</tr>
</tbody>
</table>

18 A similar number is also reported by Reniers (2003).
19 Greenwood et al. (2017) explores what happens to equilibrium outcomes when the risk of divorce is lower.
4.2 Parameters Chosen to Match Data Moments

The remaining parameters have no clear data analogues. For example, utilities from the different types of sexual relationships are free parameters, constrained only by $p < u$; i.e., people enjoy unprotected sex more than protected sex. These parameters are picked to match several facts related to sex, marriage and HIV/AIDS in Malawi.

As specified above, the only exogenous heterogeneity (in addition to the gender difference in transmission risk) is the degree of patience people have. Assume that the young are more impatient than the old.\(^{20}\) Recall that $\bar{\iota}$ and $\bar{\beta}$ denote the discount factors for the young and the old. Note that these are “pure” discount factors; i.e., net of mortality risk.\(^{21}\) Suppose that $\bar{\beta}$ varies across individuals according to a uniform distribution with support $[\bar{\beta}_{\text{min}}, \bar{\beta}_{\text{max}}]$. Moreover, assume the ratio of discount factors when young versus old is always given by the same value $\iota_{\text{change}} = \bar{\iota} / \bar{\beta} < 1$. Thus, there are 11 free parameters: $p, u, \ell, \omega_s, \omega_l, \kappa, A, \eta, \bar{\beta}_{\text{min}}, \bar{\beta}_{\text{max}}, \text{and } \iota_{\text{change}}$. See Table 2 for a summary. To discipline the choice of the parameters, 11 data moments are targeted. Table 3 gives an overview of the data moments and shows how well the benchmark model matches them.\(^{22}\)

The main targets are the overall prevalence rate for HIV/AIDS in society, and the prevalence rates for each gender. Some additional targets are selected to discipline the exercise, such as the fraction of sex that is casual as opposed to long-term, the fraction of the population that is single, and the pattern of marriage by age. This ensures that there is not too much reliance on risky short-term interactions. Many people are married, and get married quickly. Moreover, females get married faster. Additionally, the fraction of condom users in casual encounters and the number of such encounters are considered. This is important because the model emphasizes the choice of whether to engage in risky activity. Finally, the fraction of people that die of natural causes, as opposed to HIV/AIDS, is

\(^{20}\)The rationale for these choices is as follows. First, some risky people are needed to generate any HIV in equilibrium. Second, assuming young people to be particularly impatient leads to more risky behavior among them. The importance of risky groups (e.g., truck drivers and prostitutes) and differential risky behavior by age is discussed in the literature (e.g., Stonebumer et al. (1996), Kremer (1996), Nzyuko et al. (1997) and Oster (2012)).

\(^{21}\)That is, $\beta = \bar{\beta}(1 - \delta)$ and $\iota = \bar{\iota}(1 - \delta)$.

\(^{22}\)All data sources for the tables and figures are discussed in Appendix B.
Table 2: CALIBRATED PARAMETERS

<table>
<thead>
<tr>
<th>Interpretation</th>
<th>Parameter value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow utility unprotected sex</td>
<td>$u = 7.8$</td>
</tr>
<tr>
<td>Flow utility protected sex</td>
<td>$p = 1.4$</td>
</tr>
<tr>
<td>Flow utility long-term sex</td>
<td>$l = -4.8$</td>
</tr>
<tr>
<td>Discount factor, low and high values</td>
<td>$\beta_{\min} = 0.969, \beta_{\max} = 0.9999$</td>
</tr>
<tr>
<td>Ratio discount factors, young vs old</td>
<td>$\tau_{\text{change}} = 0.874$</td>
</tr>
<tr>
<td>Value of life with Aids</td>
<td>$A = 5.8$</td>
</tr>
<tr>
<td>Prob. of switch to high discount factor</td>
<td>$\eta = 0.116$</td>
</tr>
<tr>
<td>Search cost parameters</td>
<td>$\omega_s = 0.44, \omega_l = 17.5, \kappa = 0.115$</td>
</tr>
</tbody>
</table>

included for overall consistency.

The upshot of the analysis is that the benchmark simulation matches these key features of the Malawian HIV/AIDS epidemic pretty well. To begin with, as can be seen from Table 3, the HIV/AIDS prevalence rate predicted by the model is 10.3%, close to the data (11.5%). Moreover, the experiment captures the gender difference in HIV/AIDS infection rates, with females experiencing a rate that is 3.5 percentage points higher than that for males (12.1% versus 8.6%).

In addition to matching moments on HIV/AIDS prevalence, the benchmark model also matches moments of other aspects of sexual activity quite well. In the model casual or short-term sex is a small fraction of all sexual encounters: 16%, close to the 18% of sex that occurs outside of a union that is reported in the data. For those who engage in casual sex, the model predicts that 33% use a condom. This is less than the 39% seen in the data, but is still close. In fact, as people have been found to overstate the amount of protected sex they have [see Allen et al. (2003)], these two numbers may be closer in reality than first meets the eye. The next row in Table 3 reports the fraction of singles who had casual sex in the last year. These statistics are different from the fraction of all sexual activity that is casual because (all) married people have sex while some singles are abstinent. Singles in the model have more casual sex than their real-life counterparts, but again, it is possible that people systematically under-report their risky sexual behavior. Finally, the fraction of the population that die from HIV/AIDS is comparable...
Table 3: TARGETED MOMENTS

<table>
<thead>
<tr>
<th>Observation</th>
<th>Data</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIV/AIDS rate, %</td>
<td>11.8</td>
<td>10.3</td>
</tr>
<tr>
<td>– Males</td>
<td>10</td>
<td>8.6</td>
</tr>
<tr>
<td>– Females</td>
<td>13</td>
<td>12.1</td>
</tr>
<tr>
<td>Fraction of all sex that is casual, %</td>
<td>18</td>
<td>16</td>
</tr>
<tr>
<td>Condom use for casual sex, %</td>
<td>39</td>
<td>33</td>
</tr>
<tr>
<td>% (of) Singles that had casual sex in past year</td>
<td>37</td>
<td>54</td>
</tr>
<tr>
<td>% Singles</td>
<td>33</td>
<td>48</td>
</tr>
<tr>
<td>% Married by age 22</td>
<td>58</td>
<td>57</td>
</tr>
<tr>
<td>– Males</td>
<td>90</td>
<td>63</td>
</tr>
<tr>
<td>% Married by age 50</td>
<td>100</td>
<td>98</td>
</tr>
<tr>
<td>– Males</td>
<td>100</td>
<td>98</td>
</tr>
<tr>
<td>% of deaths related to HIV</td>
<td>29</td>
<td>25</td>
</tr>
</tbody>
</table>

Table 3 also lists the fraction of singles in the entire population. The model predicts this fraction to be 48%, a little higher than the 33% observed in the data. Moreover, it captures some of the gender differences in the timing of marriage. Women marry much earlier than men—in the data, 90% of women are married by age 22, whereas only 58% of men are married by this age. The corresponding numbers in the model are 63% and 57%. The model generates the earlier marriage of women (relative to men) via their higher infection risk. This makes the safety of marriage more attractive for women vis-à-vis men. In reality HIV risk is only one reason why women get married earlier than men. Additional considerations such as the risk of pregnancy make casual encounters more risky for women, which might explain the larger wedge between the genders in the data compared to the model. As is only reasonable, men eventually “catch up,” and by age 50 almost everyone is married, both in the model and the data. See Figure 1 for a comparison of the fraction of the population that has ever married in the model vs. the data.

23 Appendix C provides sensitivity analysis for these estimated parameters. Both benchmark moments and the response to some policy experiments (discussed in Section 5) are analyzed.
4.3 Non-Targeted Observations

The benchmark model generates some other predictions that are not targeted when picking values for parameters. In this section, several life-cycle implications of the model are compared to the data. The model tracks these data patterns surprisingly well despite the limited degree of heterogeneity and despite the limited state variables that describe the agent’s life-cycle. This finding adds additional confidence for the policy experiments.

Figure 2 plots HIV/AIDS prevalence by age. Both the model and data agree on a hump-shaped infection pattern, despite the fact that agents in the model become sexually active earlier than is observed in the data, which shifts the model’s life-cycle predictions on HIV/AIDS infections to the left. The hump-shaped pattern is explained by two opposing forces. First, the rise in HIV/AIDS infection is due to the fact that older people have had more time to be sexually active, and so a larger percentage of older people is infected with HIV/AIDS. However, people who are infected early in life will die before they make it to old age. Put differently, people who have made it to old age must be those who have engaged in less risky sexual behavior and so are less likely to be infected with HIV/AIDS. This second effect explains the eventual drop in HIV/AIDS prevalence seen at older ages. Figure 2 also illustrates the differentiated patterns of infection between the sexes. The figure shows that women get infected earlier than men, both in the model and the data.

\[\text{Figure 1: Fraction ever Married – Model vs. Data} \]

24 The data is fitted with a third-order polynomial. See Figures 11 and 12 in Appendix A for a comparison of the raw data and the fitted line. The somewhat choppy raw data is due to the small sample sizes.
The model also does a very nice job in matching the decline in risky activity over the life cycle. Older people are less likely to be single, see Figure 3a. As people age, they are thus less likely to engage in casual sex; this is reported in Figure 3b.

An additional prediction of the model relates to death causes, since agents may die due to HIV/AIDS or due to other natural causes. Figure 4 compares the model prediction over the life cycle with its data counterpart. Both the model
and the data exhibit a hump-shaped pattern of HIV/AIDS caused deaths; this is consistent with the hump-shaped pattern of infection rates.

Additionally, protected sex in the benchmark simulation is substantially cheaper for men than unprotected sex ($z_p = -6.5 < z_u = 277$). Note that such a premium has in fact been documented in the literature. Gertler, Shah, and Bertozzi (2005) use data from commercial sex workers in Mexico to document a 23% premium for unprotected sex. The premium increases to 46% when the sex worker is considered to be very attractive.

In this section, several moments in the model were compared with Malawian data. In Section 5, within the context of circumcision, model predictions will be compared with cross-country data. This provides an additional validity check for the model.

5 Policy Experiments

The model is now ready to explore the effectiveness of various policies intended to curb the spread of HIV/AIDS. Equate effectiveness with the reduction of the prevalence rate, as this is the stated goal of many governments and non-profit organizations. It should be mentioned, however, that a decrease in HIV/AIDS
does not necessarily imply an increase in welfare. On the one hand, if people have less sex, an activity they enjoy, their welfare might decrease. On the other hand, the model features an externality as people do not internalize the effect of their own risky behavior on the health of others. Moreover, men and women might be differentially affected due to a change in prices.

This section investigates four specific policies. The first two policies have been at the forefront of the policy discussion and have been to some extent widely implemented by now – namely the introduction of anti-retroviral therapy (ART) and circumcising males in large numbers. The two additional polices yield some surprising results – improving condoms and treating other sexually transmitted diseases. A companion paper analyzes further policies aimed at the behavioral aspects of the problem, namely policies aimed to increase marriage and thereby reduce casual sex (Greenwood et al. 2017).

In addition to studying the effectiveness of the various policies in the full model, two alternative versions of the model are simulated: (i) small scale field experiments and (ii) epidemiological experiments. To be concrete, the field experiment assumes that only a small fraction of the population is treated and changes their behavior, but that this fraction interacts in equilibrium with everyone else at the pre-existing equilibrium prices and infection rates. The epidemiological experiment assumes that people make no behavioral adjustments. It therefore uses the policy functions from the benchmark calibration. The infection probabilities and assessments of transmission risks are governed by the new transmission probabilities. Comparing the effectiveness of policies across the three versions of the model demonstrates the importance of both elements—behavioral adjustment and equilibrium interaction. It also gives insights into the extent to which actual field experiments and epidemiological studies might (or might not) generate reliable policy advice. As will be seen below, results from the full equilibrium experiment are often in between the epidemiological and the field experiment. However, depending on the type of policy, there are exceptions.

In this context it must also be stressed that there are multiple types of equilibrium effects. First, the aggregate prevalence rate changes, which changes the riskiness of sex, and thereby can amplify (or mitigate) the direct impact of a policy. Second, there is also a secondary behavioral adjustment in response to the change in
the aggregate prevalence rate. Third, prices change and people may change their behavior in response. Note that while equilibrium effects through prices are generally the most commonly considered in economics, these price effects are the least important in the current context. Most importantly, behavioral adjustments in response to price changes are very subtle as men and women are affected in opposite ways. Assume, for example, the price for sex with condoms goes up. Would people use fewer condoms? This is not obvious as an increase in the price means men have to pay more for protected sex, but also that women receive more. Thus, all else equal, men would demand less protected sex, but women would demand more. Since this cannot be an equilibrium, something else needs to adjust to assure market clearing. Thus, aggregate demand for a particular type of sex is not necessarily monotonic in the price.

5.1 Male Circumcision and HIV

A policy intervention that has received a lot of recent attention is male circumcision. UNAIDS lists circumcision as one of five prevention pillars in their 2016 report (UNAIDS 2016). Similarly, the World Health Organization has been promoting voluntary male circumcision as a prevention tool (World Health Organization 2016). Consider analyzing this particular policy within the model. Recall that the baseline model included 20% circumcised males. So in what follows an increase in the circumcision rate is analyzed.

Start by asking to what extent cross-country variation in circumcision explains the observed HIV differences across countries. While recently circumcision has been advocated as a medical policy, it has not been implemented on a large scale yet. Thus, existing cross-country differences in circumcision rates seem unrelated to HIV, but rather due to cultural reasons. Data from 32 sub-Saharan African countries is used to explore the empirical relationship between HIV and circumcision.\(^{25}\) As Figure 5 shows, there is a clear negative correlation between HIV and circumcision in the data. Obviously countries differ along many dimensions other than circumcision which may also affect HIV rates, such as how rich a country is. Table 4 reports a more comprehensive empirical analysis, controlling for

\(^{25}\)See Appendix B for details on the data.
Now contemplate performing the analogous exercise in the model. In other words, vary the fraction of men who are circumcised in the model and compute the implied equilibrium HIV rate. There is an almost linear relationship with a slope of -0.05. In other words, for each 10 percentage point increase in circumcision, the HIV rate declines by about half a percent. This is quite similar in magnitude to the coefficient from the regression. Controlling for observables, the last column in Table 4 shows a coefficient of -0.064. Thus, the model quite closely replicates the cross-country relationship between HIV and circumcision.

Table 4: HIV and Circumcision Across Countries - Regressions

<table>
<thead>
<tr>
<th></th>
<th>Dependent variable: HIV prevalence rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>circumcision</td>
<td>-0.1122 ***</td>
</tr>
<tr>
<td>Log GDP p.c.</td>
<td>0.0314 ***</td>
</tr>
<tr>
<td>ART</td>
<td>0.0816</td>
</tr>
<tr>
<td>syphilis</td>
<td>0.0025</td>
</tr>
<tr>
<td>muslim</td>
<td>-0.002</td>
</tr>
<tr>
<td>christian</td>
<td>-0.00039</td>
</tr>
<tr>
<td>condom price</td>
<td></td>
</tr>
<tr>
<td>R^2</td>
<td>0.72</td>
</tr>
<tr>
<td>N</td>
<td>32</td>
</tr>
</tbody>
</table>

Various potentially confounding factors such as GDP, ART, religion and the price of condoms.
Table 5: Circumcision

<table>
<thead>
<tr>
<th></th>
<th>BM (20% circ)</th>
<th>BM by type</th>
<th>100% circ</th>
<th>Epidem.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>not circ</td>
<td>circ</td>
<td></td>
</tr>
<tr>
<td>HIV/AIDS rate, %</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>–Males</td>
<td>10.3</td>
<td>8.75</td>
<td>8.0</td>
<td>5.6</td>
</tr>
<tr>
<td>–Females</td>
<td>8.6</td>
<td>8.75</td>
<td>3.8</td>
<td>4.1</td>
</tr>
<tr>
<td>casual sex, male (per quarter)</td>
<td>12.1</td>
<td>22</td>
<td>29</td>
<td>4.6</td>
</tr>
<tr>
<td>condom use, male</td>
<td>16</td>
<td>14</td>
<td>22</td>
<td>–</td>
</tr>
<tr>
<td>% men who are singles</td>
<td>33</td>
<td>35</td>
<td>27</td>
<td>22</td>
</tr>
<tr>
<td>% male singles had sex in last quarter</td>
<td>21</td>
<td>19</td>
<td>28</td>
<td>31</td>
</tr>
<tr>
<td>Price – protected</td>
<td>–6.5</td>
<td>–</td>
<td>53</td>
<td>–</td>
</tr>
<tr>
<td>Price – unprotected</td>
<td>278</td>
<td>–</td>
<td>309</td>
<td>–</td>
</tr>
<tr>
<td>Price – long term</td>
<td>125</td>
<td>–</td>
<td>161</td>
<td>–</td>
</tr>
</tbody>
</table>

Since cross-country data was not used in the calibration, this can be seen as an external validation of the model.

So would male circumcision be a promising policy that should be promoted? Probably yes.\(^{26}\) Table 5 shows that scaling circumcision up from the current 20% to 100% would cut the HIV rate almost into half – from 10.3 to 5.6 percent. This would work despite significant behavioral adjustments by men. The model suggests that men would engage in more risky behavior along all dimensions: less marriage, decreased condom use, and more sex.\(^{27}\) The equilibrium model also shows a sizeable positive effect for women: The prevalence rate among women falls from 12.1 to 7.6 percent. This is worth emphasizing as the effect on women is theoretically unclear. Women do not directly benefit from circumcision as the male-to-female transmission rate does not change. Moreover, the increased risky behavior of their partners would, all else equal, lead to more HIV among women. Yet, women benefit through the equilibrium effects. Thus, the lower female-to-male transmission rate eventually also leads to a decline in the female prevalence rate.

The conclusion that circumcision is an effective policy is in line with findings in field experiments. Padian et al. (2010) compare the effects of 36 RCTs in the

\(^{26}\) Of course this analysis ignores any potential negative psychological side effects.

\(^{27}\) This is in line with cross-sectional studies showing that circumcised men engage in more risky sexual behavior along several dimensions (Bailey and Othieno 1999; Seed et al. 1995).
context of HIV. Only six RCTs delivered definitive results on HIV – three of which were circumcision RCTs. But what about the size of the effect? In the model, the behavior of circumcised men corresponds to the treated group in a small field experiment, while non-circumcised men would constitute the control group. Clearly, in line with the RCTs, the treated men in the model have a lower HIV rate. However, the effect is small (8 vs. 8.75%). This is due to the missing equilibrium effects and behavioral responses among the circumcised that crowd out some of the gains from the intervention. The simulation suggests that circumcised men have 50% more casual sex, use condoms about 25% less, and are slightly more likely to be unmarried. The result that circumcised men engage in more risky behavior is in line with the empirical findings from RCTs. Bailey et al. (2007) find that unprotected sex fell a lot less for the newly circumcised relative to the control group. Similarly, Auvert et al. (2005) find a statistically significant increase in the number of partners for the circumcised men.

A simple extrapolation from such a field experiment might suggest that circumcision is useful but effects are expected to be small. Yet, the experiments show when circumcising the entire male population powerful equilibrium effects kick in. The male HIV rate falls by more than half (from 8.6 to 3.8%). This is despite even larger behavioral responses in equilibrium. The relevant equilibrium effect here is perhaps best compared to interest rate compounding. Because female-to-male transmission rates are lower, for a given sexual behavior, fewer men get infected. Given that fewer men are infected, for a given female sexual behavior, fewer women get infected. And so on.

The equilibrium effect would of course also be present in epidemiological studies. The epidemiological model version is reported in the last column of the table. Not surprisingly, the epidemiological experiment exaggerates the beneficial impact of the policy as it completely ignores the additional risk taking behavior. The potential overstatement of effects is a concern of the epidemiological literature. Williams et al. (2006) simulate large positive effects of circumcision in SSA, but add a cautionary note at the end noting that increases in risk-taking may reduce

28 Note that most circumcision RCTs were combined with counselling sessions for both the treatment and control group. Since this increased awareness likely led to more cautious sexual behavior, the relevant thing to look at is behavioral change in the treatment relative to the control group, rather than the absolute change.
some of the benefits of male circumcision (MC). The study concludes “population level studies of MC are now needed to determine the likelihood of behavioural disinhibition and to assess its impact on transmission in the long term.” A similar call for male circumcision studies at scale is made in de Walque (2012). Since population level studies are expensive and difficult to implement, the equilibrium model offers a promising alternative. It appears that the equilibrium effects are much more powerful than the (adverse) behavioral responses, and thus the true beneficial effects of circumcising all men is much closer to what an epidemiological study would find than to a direct extrapolation from a field experiment.

5.2 Was ART successful in reducing HIV?

A second policy that has gained widespread attention is the introduction of antiretroviral therapy (ART). While initially invented as a treatment for sick people, it is now also believed to have a preventive component. ART lowers the viral load and thus both makes the person taking the drugs feel healthier (and live longer) but also less likely to pass the virus on. Since the existence of ART makes life with HIV more tolerable, this may lead healthy people to engage in riskier behavior. Moreover, since HIV-infected people on ART live longer, they have more time to pass the virus on. Thus, the net effect of circumcision on HIV is not obvious. Previous research, based on different methodologies, finds a wide range of effects. The predicted long run effects range from the complete eradication of HIV to an increase in the prevalence rate. Much of the medical literature seems convinced of the effectiveness of the policy (e.g. Cohen, M.S. et al (2011)), while for example Lakdawalla, Sood, and Goldman (2006) show empirically that ART has led to an increase in HIV in the United States. Wilson (2012) provides a survey of the empirical studies to date and warns that widespread enthusiasm for treatment as prevention may be misguided, since expected outcomes are currently mostly based on clinical trials alone which are not informative for what would happen if the entire population was treated.

In Malawi, ART was introduced in 2005. Figure 6 shows that over the course of a decade (2004-2014), the fraction of infected people on ART increased from essentially zero to 50%. At the same time, HIV has been declining. The Malawian
government seems to have already concluded that the decline was due to the successful ART scale-up.29 Clearly, by just inspecting the two time series in Figure 6, it is clear that ART cannot be the whole story. The HIV decline started in 2000, which is 5 years prior to the introduction of ART. Anticipation effects would go in the wrong direction – as anticipating ART should make people behave in a more risky fashion without yet experiencing the benefits of the lower transmission risk. However, it is of course possible that the introduction of ART did contribute to the HIV decline in the later years. The model can be used to assess (and quantify) this hypothesis.

ART is modelled as a decline in the (out-going) transmission rate. Assume a reduction in infectivity by two thirds, which is within the range of empirical estimates.30 Specifically the quarterly transmission risk for unprotected sex declines from 0.21 to 0.07 for females having sex with someone on ART, and from 0.12 to 0.04 for males.31 The reduced mortality (and accordingly increased quality of life) is modelled as a longer life without symptoms. This means that infected people on ART live longer, but also enjoy a better life after infection (relative to those not on drugs). Specifically reduce α, the probability of symptoms breaking out, from 0.025 to 0.0125. Since symptoms are quickly followed by death, this means that mortality is essentially reduced by 50\% which is in line with the evidence.32

In the model, infected people are treated randomly. The probability of being selected for treatment is q. Since treatment is an absorbing state, q percent newly treated each period cumulates to give a substantially higher ART rate. Envisage

29“Malawi’s rapid and successful Antiretroviral Therapy scale-up from 2004 to 2014 has critically influenced the trajectory of the HIV epidemic …”, see p.2 in Malawi AIDS Response Progress Report 2015, Government of Malawi.

30The estimates cover a wide spectrum, ranging from a low reduction of 13\% in Lakdawalla, Sood, and Goldman (2006), to a medium decline of 60\% in Porco et al. (2004) to a high reduction of 94\% in Cohen, M.S. et al (2011). Most of the high numbers are related to the best possible treatment, i.e., early introduction of a combination anti-retroviral therapy, which is not the standard treatment in poor countries today. The timing seems important for the reduction of infectivity, with a higher reduction when treatment is given right after infection, something the model does not capture. Thus, for the purposes here, the more conservative estimates seem more relevant.

31This corresponds to an increase in gamma from 0.787 to 0.929 for females and from 0.879 to 0.96 males. The numbers for protected sex and for circumcised men are adjusted accordingly when having sex with a treated individual.

the following exercise: increase q such that the equilibrium fraction of infected on ART goes up in line with the data. The model then gives, at various levels of treatment, the long-term HIV rate. Since the model compares steady states (i.e., ignores transitional dynamics), this exercise will give an upper bound on the fraction of the HIV decline due to ART.

The triangles in Figure 6 display the simulation results. The surprising answer is that none of the HIV decline can be attributed to the introduction of ART. In other words, the negative effects (increased risk-taking, longer time to infect others) of the policy dominate the positive effects (lower transmission rate making sex safer). Now should one conclude from this that ART is not an effective policy to curb HIV? Probably not. The experiments show that the relative importance of the positive vs. negative effects changes with the ART rate. Figure 7 shows that higher levels of treatment are actually quite effective. Once more than 50% of the infected are treated, the preventive effect dominates. In other words, going forward, a further expansion of the ART program would seem like a promising idea. The point that ART may be beneficial only once a large enough fraction of the infected is treated is also emphasized in Friedman (2015), who also conducts a simulation in a one-gender model with only one margin of risky behavior. One more thing to note is that welfare unambiguously increases as more people are
treated. Even if HIV rates can go up, living longer might outweigh any negative consequences of that.33

To better understand the non-monotonicity, also consult Table 6. When a third of the infected is treated, people realize they may have a reasonable chance of getting treated, if they catch HIV and accordingly take less precautions. Condom use goes down by six percentage points, casual sex goes up from 54 to 63, and there are more singles now. When 80% of the infected are treated, the behavioral adjustments are even more dramatic. The increase in risk-taking is in line with the empirical findings. Most evidence to date comes from developed countries.34 However, there is some limited evidence from African countries as well. Identifying the change in behavior in response to ART is notoriously difficult. Clearly a randomized controlled trial to assess the effect on the uninfected is difficult to conceive.35 Some studies use heterogeneity in beliefs about the effectiveness of ART, such as De Walque, Kazianga, and Over (2012) who find a

33Welfare here is measured as the expected value of being born in worlds with different levels of treatment.

34For example, see Crepaz, Hart, and Marks (2004) for a meta-analysis of 25 studies in the US, Europe, and Australia.

35In the model field experiment it is easy to “treat” some uninfected by changing their q, i.e., the probability that they would get treated with ART should they get sick. Implementing this in reality would require essentially an information treatment, where some people are informed about increased access to ART while others are not.
large increase in self-reported risk behavior in response to ART in Mozambique – both in terms of more casual sex and less condom use. Similarly, Cohen et al. (2009) find increased risk-taking behavior in those men who have stronger beliefs about the effectiveness of ART compared to those with more skeptical beliefs. The perhaps most convincing empirical evidence comes from Friedman (2015) who uses a difference-in-difference strategy based on proximity to an ART provider in Kenya. She finds an increase in self-reported risky behavior of about 40% – both in terms of the incidence of casual sex and condom use. Using a biomarker (pregnancy) the effect is even larger, about 80%.

Behavioral adjustments alone would lead to a large increase in the HIV rate, as the field experiment shows, which predicts an increase in the HIV rate to 16.7%. However, these effects are mitigated in equilibrium by the fact that the treated interact with everyone else. Since in the full general equilibrium experiment 80% of the population is treated, sex in general is safer, which leads to a lower aggregate prevalence rate. In the field experiment, people realize that once they get sick they have a 80% chance of getting treated eventually (7.5% per period) but they still have sex with the general population, i.e., essentially none of their potential partners is treated. So their behavioral adjustments lead to a very high HIV rate of 16.7% and there is no offsetting effect through a lower chance of catching the virus. On the other hand, by completely ignoring the behavioral adjustments, one would make the opposite mistake. The epidemiological version predicts a massive HIV decline to a prevalence rate of only 2.5%. In other words, the behavior and the equilibrium effects go in opposite directions – which of them dominates depends on the fraction of people treated. A too cautious attempt may backfire.

5.3 Other Policies

Consider now two additional policies. The first is about condoms and the second about treating other sexually transmitted diseases.

36Friedman (2015) provides a discussion on why self-reported sexual behavior changes may be biased downward. Hence, biomarkers may give the more reliable picture.
5.3.1 Better Condoms

Suppose one could design more pleasurable condoms (or perhaps raise the psychic pleasure of sex with a condom through a publicity campaign). Would this be desirable? The effect of more pleasurable condoms is displayed in Figure 8 where starting from the benchmark, utility from sex with condoms is increased until it reaches the same period utility as unprotected sex. It turns out that the HIV rate displays a non-monotone pattern when increasing pleasure from condoms, p. The reason that increasing the utility from protected sex does not always lead to a lower prevalence rate is that single life becomes more attractive.

While this seems perhaps somewhat far-fetched, note that UNAIDS lists exactly such a policy in their recent report: “Develop new approaches to increase condom use and to enhance the positive perception of condoms among the various populations in need.”, p. 30 in UNAIDS (2016).
Table 7: Better Condoms

<table>
<thead>
<tr>
<th></th>
<th>Benchmark</th>
<th>Better (5.5)</th>
<th>Better still (7.5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>1.4</td>
<td>G. E. Field</td>
<td>G. E. Field</td>
</tr>
<tr>
<td>p/u</td>
<td>0.18</td>
<td>0.70</td>
<td>0.97</td>
</tr>
<tr>
<td>HIV/AIDS rate, %</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fraction of sex that is casual, %</td>
<td>10.3</td>
<td>15.8</td>
<td>15.6</td>
</tr>
<tr>
<td>% (of) Casual sex with condom</td>
<td>15.7</td>
<td>34</td>
<td>31</td>
</tr>
<tr>
<td>% Singles who have casual sex</td>
<td>33.0</td>
<td>59</td>
<td>57</td>
</tr>
<tr>
<td>% Men who are single</td>
<td>54.0</td>
<td>66</td>
<td>73</td>
</tr>
<tr>
<td>% Women who are single</td>
<td>50</td>
<td>64</td>
<td>60</td>
</tr>
<tr>
<td>% Price – protected</td>
<td>125</td>
<td>134</td>
<td>138</td>
</tr>
<tr>
<td>% Price – unprotected</td>
<td>-6.5</td>
<td>246</td>
<td>-</td>
</tr>
<tr>
<td>% Price – long term</td>
<td>279</td>
<td>264</td>
<td>-</td>
</tr>
</tbody>
</table>

So, even though condom usage increases, there are more singles in total and they engage in both protected and unprotected sex. Table 7 gives the example of quadrupling condom pleasure (from 1.4 to 5.5) and then increasing it even further, to 7.5 at which point protected and unprotected sex give almost equal utility. In response, condom use increases tremendously, almost doubling from 32 to 59%. However, the fraction of single men and women also substantially increases (from 48 to 62%). Moreover, the fraction of singles that engage in short-term sex goes up from 54 to 66%. In sum, while more people use condoms, there is also more casual sex. These two forces (safer sex vs. more sex) push the prevalence rate in opposite directions. In the example of quadrupling the pleasure, the latter force dominates, so that the overall HIV rate goes up by about 60% (from 10 to 16%). Yet, that is not always the case as can be seen from the figure. As condoms first get better, the HIV/AIDS prevalence rate initially goes up. As more and more people start to use condoms, however, the lower likelihood of getting infected becomes more important and the prevalence rate starts to go back down. This experiment highlights the potential of some policies to backfire and actually increase the overall prevalence rate. Note also that these effects can be quantitatively quite important: in the experiment, the HIV rate goes up by 40% as the utility gap between protected and unprotected sex disappears.

Implementing this particular policy as a field experiment gives surprising results. Depending on the exact increase in pleasure, the field experiment effects
are larger or smaller than the full equilibrium effects – see Table 7. This is due to two competing forces. Recall that several types of equilibrium effects are not present in the field experiment. In particular the aggregate prevalence rate does not adjust, and hence there are no behavioral responses to the change in prevalence rate either. As the aggregate prevalence rate goes up in this experiment, people realize that sex is more risky and hence use even more condoms. More generally, as the table shows, the behavioral response in risky behavior is more pronounced in the field experiment as singles have more casual sex.\footnote{Marriage goes down by more in equilibrium than the field experiment, which may seem puzzling at first. Note, however, that sex in marriage is unprotected by assumption. So marriage itself now is a more risky activity. This effect again is absent in the field experiment version.} In sum, there are two forces pointing in opposite directions. On the one hand, the behavioral response is larger in the field experiment, which dominates for the second experiment (increasing condom pleasure to 7.5). On the other hand, the compounding coming from the aggregate prevalence rate increasing and hence amplifying any given behavior change is only present in the full equilibrium model, which dominates in the first experiment (5.5). In sum, the reaction in the field experiment can be amplified or mitigated relative to the full equilibrium effect.

Finally, an epidemiological experiment would predict no effect of the condom policy. This is by construction, as epidemiological experiments assume no change in behavior, but without behavioral change, the increased condom pleasure by itself would not do anything. This is worth pointing out, since in the case of the medical policies the lack of behavioral adjustments leads to an exaggeration of effects in the epidemiological experiments. Naturally the opposite is the case in any experiment where the behavioral adjustments are needed for a policy to work – as in the case of increasing condom pleasure where the hope is that more people would use them. The same logic would be present for policies aimed to work though the marriage market, as laid out in Greenwood et al. (2017).

5.3.2 Policies that Reduce Transmission for Both Sexes

Several policies involve the reduction in transmission risk. Large amounts of money are currently being poured into research aimed to develop a vaccine against HIV. While no successful vaccine exists yet, researchers remain hopeful that the
Table 8: Treating Other STDs

<table>
<thead>
<tr>
<th></th>
<th>Benchmark</th>
<th>Equilibrium</th>
<th>Epidem.</th>
<th>Small Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ_{m}^u</td>
<td>0.88</td>
<td>0.90</td>
<td>0.90</td>
<td>0.90</td>
</tr>
<tr>
<td>γ_{f}^d</td>
<td>0.79</td>
<td>0.82</td>
<td>0.82</td>
<td>0.82</td>
</tr>
<tr>
<td>HIV/AIDS rate, %</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>–Males</td>
<td>10.3</td>
<td>9.5</td>
<td>7.0</td>
<td>10.1</td>
</tr>
<tr>
<td>–Females</td>
<td>8.6</td>
<td>7.9</td>
<td>5.9</td>
<td>8.5</td>
</tr>
<tr>
<td>Fraction of sex that is casual, %</td>
<td>15.7</td>
<td>18.7</td>
<td>—</td>
<td>16.7</td>
</tr>
<tr>
<td>% (of) Casual sex with condom</td>
<td>33.0</td>
<td>27.6</td>
<td>—</td>
<td>31.2</td>
</tr>
<tr>
<td>% Singles who have casual sex</td>
<td>54.0</td>
<td>60</td>
<td>—</td>
<td>56</td>
</tr>
<tr>
<td>% Men who are single</td>
<td>50</td>
<td>52</td>
<td>—</td>
<td>51</td>
</tr>
<tr>
<td>% Women who are single</td>
<td>46</td>
<td>47</td>
<td>—</td>
<td>46</td>
</tr>
<tr>
<td>% Prices – protected</td>
<td>-6.5</td>
<td>10</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>% Prices – unprotected</td>
<td>279</td>
<td>286</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>% Prices – long term</td>
<td>125</td>
<td>127</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

development of a partial vaccine is possible.\(^{39}\) Similarly, certain gels are thought to reduce the transmission risk. Another policy that has recently been advocated is the treatment of other sexually transmitted diseases (STDs). The idea is that the presence of other STDs makes a person more susceptible to contracting HIV. Thus, treating other STDs will decrease the transmission risk, both for men and women. For example, Grosskurth et al. (1995) finds that improved STD treatment reduced HIV incidence by about 40% in rural Tanzania. Oster (2005) compares data from African countries and from the US and reaches the conclusion that treating other STDs would be an effective policy. This conclusion is based on an epidemiological simulation, which shows that differences in transmission rates (due to the existence of other STDs) can explain much of the difference in HIV rates between the US and Sub-Saharan Africa.

Table 8 shows the simulation results for this policy in the quantitative model. As the transmission risk for both men and women declines by about 15%, the HIV incidence decreases by almost one percentage point from 10.3 to 9.5%. Note that this decrease in HIV prevalence masks the fact that, when faced with better odds

\(^{39}\)Promising results of a new vaccine that would reduce transmission by 30% were reported in the media as early as 2009, on September 25, the *Wall Street Journal* wrote “Vaccine Shows Promise in Preventing HIV Infections.” However, additional data analysis found that the results were statistically insignificant.
when having sex, agents engage in riskier behavior. The fraction of sex that is casual increases from 15.7 to 18.7%. This is because there are more singles now, and singles have more sex. Moreover, out of the singles having sex, condom usage falls from 33 to 28%. Despite the increase in risky behavior, the policy works in the sense that HIV does fall.

Yet the behavioral changes have non-trivial effects, which can be seen as follows. Compare the results with the epidemiological version of the experiment in the third column of Table 8 – see also Figure 9. In the epidemiological experiment, the decline in HIV prevalence is much larger, to 7%. The reason for this difference is exactly the lack of behavioral changes described above. Thus, simulations based on epidemiological experiments may significantly overstate the beneficial effects of STD treatment. This casts some doubt on Oster (2005)’s finding of STD treatment alone being able to explain much of the US-SSA difference in HIV as the study was based on the assumption of constant sexual behavior across countries. Allowing sexual behavior to adjust would shrink the predicted HIV gap between the US and SSA and hence, while still leaving a sizeable role for STDs, it would no longer be able to explain the entire gap.40

The field experiment goes in the opposite direction: it predicts only a very small change in the HIV incidence compared to the benchmark. The reason is that, in

40Oster (2005) argues that sexual behavior in the data is remarkably similar in the US and SSA. However, Table II seems to indicate that behavior is indeed somewhat more risky in the US, which would be in line with the model, where people in the country with lower transmission risk engage in more risky behavior.
the field experiment, the reduced number of infections does not lead to an overall decrease in the population prevalence rate. Therefore, it does not feed back into lower infection rates for the treated population, something that is naturally part of the full general equilibrium model.

The lack of a substantial HIV decline in the field experiment might actually be quite important. Note that eight of the nine studies of STD treatment for HIV prevention surveyed by Padian et al. (2010) delivered flat results. This seems quite puzzling, given that the theoretical effects of STD treatment are uncontroversial in the medical community. The simulations presented here highlight a novel reason for the lack of finding a large effect, namely the missing equilibrium effects in randomized field experiments. Thus, treating STDs might actually be a promising policy measure, even though it is tough to detect positive results in field experiments.

Taking stock, treating other STDs seems to decrease the overall HIV prevalence rate, even though people engage in riskier behavior in response to the lower likelihood of getting infected. This shift in behavior makes the use of a choice-theoretic general equilibrium model like the one proposed here essential. The differences arising from these behavioral responses seem to be quantitatively important.

6 Conclusions

In Malawi about 11 percent of the population has the HIV/AIDS virus. Roughly 18 percent of sex is casual and a condom is used a quarter of the time. An equilibrium search model is constructed to analyze the Malawian HIV/AIDS epidemic. At the heart of the model is homo economicus. Specifically, it is presumed that the economic man (or woman) searches for the type of sexual activity that (s)he desires to engage in, while rationally taking into consideration the risks of this activity. Some people will select stable long-term relationships, others may choose more fleeting ones. Condoms may or may not be used in these more ephemeral encounters, depending on the participants’ mutual desires. The number of such encounters is partially under people’s control. All of these choices crucially affect
the spread of HIV/AIDS in society.

The aim of the analysis is to provide a toolbox that allows the study of various interventions, identifies where behavioral change might be important, and thereby identifies areas where further and deeper exploration might be most warranted.

The theoretical model developed is calibrated to capture some of the salient features of the Malawian HIV/AIDS epidemic. The framework can match both targeted and non-targeted statistics regarding sexual behavior and HIV/AIDS in Malawi as well as some cross-country data. The benchmark simulation is then used to undertake some policy interventions. The quantitative results suggest that policy analysis of HIV/AIDS interventions may be complicated. In particular, some policies may backfire and actually increase HIV. The simulations can also rationalize some puzzling results in previous works.

References

Auvert, Bertran, Dirk Taljaard, Emmanuel Lagarde, Jolle Sobngwi-Tembekou,

Transmitted Disease, and Risk of HIV.” *Journal of Acquired Immune Deficiency Syndrome*, pp. 883–890.

A Appendix—Additional Figures

Figure 10: Timing of Events

- ○ indicates search intensity choice at this node
- ❤ indicates sexual activity

All singles enter period with health status ϕ in $\{0, 1, t\}$

$V_i(\phi)$

If no break-up

\tilde{V}_i

match in long term market

Exogenous (ε) or endogenous ($= partner symptoms$) break-up

\tilde{V}_p

match

protected

no match

\tilde{V}_a

unprotected

\tilde{V}_a

t

$t + 1$

If infected, symptoms (α), Value: A

Exogenous death (δ)

Stochastic Aging (η)

update status (ϕ), treatment (q)

B Appendix—Data

Most of the empirical moments are based on information from the individual interviews of the Malawi Demographic and Health Survey (MDHS) in 2004, carried out by the Malawi National Statistical Office. In this survey 11,698 women aged 15 to 49 and 3,261 men aged 15 to 54 were interviewed. Means are calculated using sample weights. For several figures means are calculated by age. Since men are underrepresented in the survey, separate means are calculated by
sex, and then averaged. Whenever sources other than the MDHS are used, it will be indicated. More details on each figure follow. For the interested reader the details also include the variable names corresponding to each question.

• Figure 1: Fraction ever Married - Model vs. Data
 The fraction of ever-married people is derived by dividing the number of people who are currently married (including cohabitation) or have been formerly married by all people. The corresponding question is “Have you ever been married or lived with a man/woman” (MDHS 2004: v/mv502).

• Figure 2: HIV Rate - Men vs. Women, Model vs. Data
 In order to calculate the HIV rates by age (MDHS 2004: v012/mv012) and gender, individual information from the MDHS 2004 is matched with the HIV test results (MDHS 2004: hiv03) for those people who agreed on doing the test along with the interview (since not everyone agreed, the sample size is smaller here: 2404 men and 2864 women). The resulting HIV rates are smoothed using a third order polynomial. The raw data are shown in Figures 11 and 12.

• Figure 4a: Singles by Age - Model vs. Data
 Those women and men who reported that they have never been married or are widowed, divorced (living or not living together) are defined as singles (MDHS 2004: v/mv501).

• Figure 4b: Casual Sex by Age - Model vs. Data
 To identify the fraction of sex that occurs in casual relationships, all men and women are considered who had sex in the last year (MDHS 2004: v/mv529). Those people are asked with whom they had sex (MDHS 2004: v/mv767a). They are also asked whether they had sex with a second (MDHS 2004: v/mv761b, v/mv767b) and third (MDHS 2004: v/mv761c, v/mv767c) partner. If one of the sex partners was not the spouse or cohabiting partner, then the sex in the last year is categorized as casual sex. Men in addition are asked whether they have ever paid for sex (MDHS 2004: mv792). Those men who have paid for sex in the last year are also defined as being active in the short-term market.
• Figure 4: Deaths by HIV/AIDS by Age - Model vs. Data
 The data on deaths caused by HIV/AIDS are taken from Bowie (2006), pages 31-42. He reports the fraction of HIV/AIDS related deaths by age groups, based on the WHO Global Burden of Disease Malawi from 2002.

• Table 1: Parameters Chosen Outside the Model
 All sources are described in the text.

• Table 3: Targeted Moments
 The data on the prevalence of HIV/AIDS in Malawi derive from the Demographic and Health Surveys’ (MDHS) Final Survey for Malawi in 2004. See MDHS (2004, Table 12.3). The fraction of sex that is casual is the proportion of people—averaged across men and women—who had sex with a non-marital, non-cohabiting partner during the last year, conditional on being sexually active, and is taken from MDHS (2004, Table 11.9). Condom usage for short-term sex also derives from MDHS (2004, Table 11.9)—and is averaged across men and women. The fraction of singles who have casual sex is reported in MDHS (2004, Tables 6.71 and 6.72) and corresponds to the weighted average of never married and divorced/separated/widowed men and women. The proportion of the population that is single is contained in MDHS (2004, Table 6.1), where single is interpreted as anyone who is not currently married, averaged across men and women. The fraction of males and females that has ever been married by a certain age is the same as in Figure 1. The World Health Organisation (2008) reports that 29% of all deaths in Malawi in 2004 were due to HIV/AIDS.

• Figure 5 and Table 4: The cross-country circumcision data comes from Ahuja, Wendell, and Werker (2009). The statistics for HIV rates, GDP per capita and ART coverage come from the World Bank Development Indicators. The rates for syphilis seropositivity relates to data among antenatal care attendees from the WHO Global Health Observatory. The fractions of populations of different religions are given by the Global Religious Futures Project of the Pew Research Center. Condom prices for different countries are reported in the Global Directory of Condom Socioal Marketing Projects and Organisations (UNAIDS).
- Figure 6: HIV is defined as “Prevalence of HIV, total (% of population ages 15-49).” ART is defined as “Antiretroviral therapy coverage (% of people living with HIV).” Both data series are taken from the World Development Indicators, accessed online in 2016.

C Appendix—Robustness

This appendix provides some sensitivity analysis regarding the parameters estimated on Section 4. Recall that 11 parameters were chosen by fitting the model to a specific set of data moments from Malawi. These are listed on the different rows of Tables 9 and 10. Each of these two tables has three columns besides the first that lists the parameters. The column labeled “HIV - benchmark” provides the HIV prevalence rate when the parameter of each corresponding row is changed by 1% (Table 9) or 10% (Table 10). The column “ΔHIV - circumcision (50%)” reports the change in HIV rate under the intervention that circumcises 50% of the males in the economy. Finally, the last column (ΔHIV - ART (q = 5%)) presents the change in HIV rate when the infected have a 5% probability of receiving ART in each period.

Table 9 shows that the benchmark is quite robust when the parameters are changed by 1%. The HIV prevalence rate is always remarkably close to the 10.3% found in the benchmark calibration. Moreover, the results from the two main policy experiments (male circumcision and ART) are also very close to the changes found in the benchmark. Juxtapose these numbers with the ones reported in Table 10, in which each parameter is changed by 10%. The percentage change now is considerably larger. Correspondingly, the HIV prevalence rate now changes compared with the main calibration. This suggests that, in order to fit the moments targeted in the calibration, the parameters should be close much closer to the ones found in the estimation.

41 To be precise, the rows for the discount factors (\(\beta_{\text{max}} \) and \(\beta_{\text{min}} \)) report changes on the discount rates \(\rho = (1 - \beta)/\beta \).
Table 9: Robustness - 1%

<table>
<thead>
<tr>
<th></th>
<th>HIV - benchmark</th>
<th>ΔHIV - circumcision (50%)</th>
<th>ΔHIV - ART (q = 5%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main calibration</td>
<td>10.3</td>
<td>-1.2</td>
<td>-0.8</td>
</tr>
<tr>
<td>p</td>
<td>10.3</td>
<td>-1.2</td>
<td>-0.7</td>
</tr>
<tr>
<td>u</td>
<td>10.2</td>
<td>-1.2</td>
<td>-1.1</td>
</tr>
<tr>
<td>l</td>
<td>10.1</td>
<td>-1.2</td>
<td>-1.0</td>
</tr>
<tr>
<td>β_{max}</td>
<td>10.3</td>
<td>-1.2</td>
<td>-0.8</td>
</tr>
<tr>
<td>β_{min}</td>
<td>10.4</td>
<td>-1.3</td>
<td>-0.8</td>
</tr>
<tr>
<td>t_{change}</td>
<td>10.2</td>
<td>-1.2</td>
<td>-0.7</td>
</tr>
<tr>
<td>A</td>
<td>10.3</td>
<td>-1.2</td>
<td>-0.9</td>
</tr>
<tr>
<td>η</td>
<td>10.2</td>
<td>-1.2</td>
<td>-0.7</td>
</tr>
<tr>
<td>ω_s</td>
<td>10.2</td>
<td>-1.2</td>
<td>-0.9</td>
</tr>
<tr>
<td>ω_l</td>
<td>10.3</td>
<td>-1.2</td>
<td>-0.7</td>
</tr>
<tr>
<td>κ</td>
<td>10.3</td>
<td>-1.2</td>
<td>-0.8</td>
</tr>
</tbody>
</table>

Table 10: Robustness - 10%

<table>
<thead>
<tr>
<th></th>
<th>HIV - benchmark</th>
<th>ΔHIV - circumcision (50%)</th>
<th>ΔHIV - ART (q = 5%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main calibration</td>
<td>10.3</td>
<td>-1.2</td>
<td>-0.8</td>
</tr>
<tr>
<td>p</td>
<td>10.3</td>
<td>-1.2</td>
<td>-0.8</td>
</tr>
<tr>
<td>u</td>
<td>9.1</td>
<td>-1.5</td>
<td>0.0</td>
</tr>
<tr>
<td>l</td>
<td>8.8</td>
<td>-1.3</td>
<td>0.3</td>
</tr>
<tr>
<td>β_{max}</td>
<td>10.3</td>
<td>-1.2</td>
<td>-0.8</td>
</tr>
<tr>
<td>β_{min}</td>
<td>11.4</td>
<td>-1.5</td>
<td>-1.8</td>
</tr>
<tr>
<td>t_{change}</td>
<td>9.0</td>
<td>-0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>A</td>
<td>10.3</td>
<td>-1.2</td>
<td>-0.8</td>
</tr>
<tr>
<td>η</td>
<td>9.8</td>
<td>-1.1</td>
<td>-0.3</td>
</tr>
<tr>
<td>ω_s</td>
<td>9.8</td>
<td>-1.3</td>
<td>-0.5</td>
</tr>
<tr>
<td>ω_l</td>
<td>10.9</td>
<td>-1.3</td>
<td>-1.3</td>
</tr>
<tr>
<td>κ</td>
<td>10.1</td>
<td>-1.2</td>
<td>-0.7</td>
</tr>
</tbody>
</table>
D Appendix—Theory

D.1 Value Functions for Young Individuals, \(d = t \)

Value functions for young individuals follow a similar structure as those for old individuals (1) - (7), with the adjustments that were outlined in the main body in connection with (1).

In particular, for young abstinent individuals of any status \(\phi \) the analogue to (1) replaces the high discount factor with the low discount factor and treats continuation values as the average between the continuation with a low and a high discount factor, so that

\[
\tilde{V}_{a}^{t}(\phi, x) = \ln(y) + \alpha_{\phi} t A + [1 - \alpha_{\phi}] t \left[Q(\phi) \left(\eta V_{l}^{t}(t, x) + (1 - \eta) V_{l}^{t}(t, x) \right) \right. \\
\left. + (1 - Q(\phi)) \left(\eta V_{l}^{t}(\phi, x) + (1 - \eta) V_{l}^{t}(\phi, x) \right) \right].
\]

Similarly, for short-term sex of infected or treated individuals \((\phi = 0, t) \) the analogue to (2) is

\[
\tilde{V}_{s}^{t}(\phi, x) = \ln(y - z_{s}) + p I(s) + u[1 - I(s)] + \alpha_{\phi} t A \\
+ [1 - \alpha_{\phi}] t \left[Q(\phi) \left(\eta V_{l}^{t}(t, x) + (1 - \eta) V_{l}^{t}(t, x) \right) \right. \\
\left. + (1 - Q(\phi)) \left(\eta V_{l}^{t}(\phi, x) + (1 - \eta) V_{l}^{t}(\phi, x) \right) \right],
\]

while for young healthy individuals \((\phi = 1) \) the analogue to (3) is

\[
\tilde{V}_{s}^{t}(1, x) = \ln(y - z_{s}) + p I(s) + u[1 - I(s)] + \\
\left(1 - \sum_{\hat{\phi}} R_{s}(\hat{\phi}) (1 - \gamma_{s}(\hat{\phi})) \chi(c) \right) \left(\eta V_{l}^{t}(1, x) + (1 - \eta) V_{l}^{t}(1, x) \right) \\
+ \sum_{\hat{\phi}} R_{s}(\hat{\phi}) (1 - \gamma_{s}(\hat{\phi})) \chi(c) \left[q \left(\eta V_{l}^{t}(t, x) + (1 - \eta) V_{l}^{t}(t, x) \right) \right. \\
\left. + (1 - q) \left(\eta V_{l}^{t}(0, x) + (1 - \eta) V_{l}^{t}(0, x) \right) \right].
\]

For long-term sex, note that the transition probabilities \(\Upsilon(\phi', \hat{\phi'} | \phi, \hat{\phi}, c, \hat{c}) \) in (5) - (6) are not affected by the discount factor, and therefore the young individual’s
analogue of (7) is:

\[
\begin{align*}
\tilde{V}^i_t(\phi, \hat{\phi}, \hat{c}, x) &= \ln(y - z_t) + u + l + \alpha_\phi A \\
&\quad + (1 - \alpha_\phi)(1 - \epsilon)(1 - \delta)(1 - \alpha_\hat{\phi})l \times \\
&\quad \sum_{\phi', \hat{\phi}'} \Upsilon(\phi', \hat{\phi}' | \phi, \hat{\phi}, c, \hat{c}) \left[\eta \tilde{V}^\beta_t(\phi', \hat{\phi}', x) \\
&\quad +(1 - \eta) \tilde{V}^i_t(\phi', \hat{\phi}', x) \right] \\
&\quad + (1 - \alpha_\phi) \left[1 - (1 - \epsilon)(1 - \delta)(1 - \alpha_\hat{\phi}) \right]l \times \\
&\quad \sum_{\phi', \hat{\phi}'} \Upsilon(\phi', \hat{\phi}' | \phi, \hat{\phi}, c, \hat{c}) \left[\eta V^\beta_t(\phi', x) \\
&\quad +(1 - \eta)V^i_t(\phi', x) \right].
\end{align*}
\] (19)

D.2 Transition Probabilities in Long-term Relationships

In the main text, equation (5) describes the transition probabilities for health status in long-term relationships when the individual is healthy and the partner is either infected or under treatment. The symmetric probabilities when the partner is healthy but the individual is infected or treated are given below:

\[
\begin{align*}
\Upsilon(t, 1|\phi, 1, \hat{c}, c) &= [1 - (1 - \gamma_u(\phi)) \chi(\hat{c})] Q(\phi); \\
\Upsilon(0, 1|\phi, 1, \hat{c}, c) &= [1 - (1 - \gamma_u(\phi)) \chi(\hat{c})] [1 - Q(\phi)]; \\
\Upsilon(t, 0|\phi, 1, \hat{c}, c) &= (1 - \gamma_u(\phi)) \chi(\hat{c}) (1 - q) Q(\phi); \\
\Upsilon(0, 0|\phi, 1, \hat{c}, c) &= (1 - \gamma_u(\phi)) \chi(\hat{c}) (1 - q) [1 - Q(\phi)]; \\
\Upsilon(t, 0|\phi, 1, \hat{c}, c) &= (1 - \gamma_u(\phi)) \chi(\hat{c}) q Q(\phi); \\
\Upsilon(0, t|\phi, 1, \hat{c}, c) &= (1 - \gamma_u(\phi)) \chi(\hat{c}) q [1 - Q(\phi)].
\end{align*}
\] (20)

D.3 Stationary Distributions

Before starting, recall the function \(\mathcal{I}(\cdot) \), an indicator function that takes the value of 1 if its argument is true and 0 otherwise. Focus on a particular gender so that the gender subscript can be omitted. At the beginning of a period, recall that \(\mathcal{S}^d(\phi; x) \) denotes the mass of singles with discount factor \(d \), health status \(\phi \) and type \(x \). \(\mathcal{L}^d(\phi, \hat{\phi}; x, \hat{x}) \) denotes the mass of married individuals of HIV status \(\phi \) with type \(x \), discount factor \(d \) and partner with HIV status \(\hat{\phi} \) and type \(\hat{x} \). Let \(A \)
be the mass of individuals with final symptoms of AIDS. The sexual behavior of individuals is according to their decision rule \(\Pi^{d}_{g,r} = \Pi^{d}_{g,r}(\phi, x) \) for each type.

Assume temporarily that only people who are in status \(\phi = t \) will be treated next period. Suppose also that the newborns continue with low discount factor in the next period. Moreover, assume the individual’s discount factor does not change. Given the beginning of period distributions \(S^{d}, L^{d} \) and \(A^{d} \) one can compute the distribution at the beginning of next period under these assumptions. Call these \(S^{0d}, L^{0d} \) and \(A^{0d} \). These can then be adjusted for changing treatment status and discount factors.

For notational convenience, define \(\bar{Q}(\hat{\phi}) \) be such that \(\bar{Q}(0) = q \) and \(\bar{Q}(t) = q \) (this is different from \(Q \) defined in the main text). Moreover, define the following variables to represent the infectiousness of each short-term market:

\[
\hat{\theta}_{s} = \sum_{\hat{\phi}} R_{s}(\hat{\phi})(1 - \gamma_{s}(\hat{\phi})), \text{ for all } s \in \{p, u\}. \tag{21}
\]

First consider next period’s distribution of single individuals. Consider first the distribution of healthy singles next period:

\[
S^{0d}(1, x) = (1 - \delta) \times \bigg\{ S^{d}(1, x)[1 - \Pi^{d}_{p}(1, x)] \left[1 - \Pi^{d}_{p}(1, x) - \Pi^{d}_{u}(1, x) + \sum_{s} \Pi^{d}_{s}(1, x)(1 - \hat{\theta}_{s}\chi(c)) \right] \\
+ \sum_{\hat{\phi}, \hat{x}} \left[L^{d}(1, \hat{\phi}; x, \hat{x}) + R_{1}(\hat{\phi}, \hat{c})\Pi^{d}_{1}(1, x)S^{d}(1, x) \left[1 - (1 - \gamma_{u}(\hat{\phi}))\chi(c) \right] \times \left[1 - (1 - \delta)(1 - \alpha_{c})(1 - \varepsilon) \right] \right\} \\
+ \mu(x)I(d = i). \tag{22}
\]

Singles survive with probability \((1 - \delta) \), captured by the first line. The second line accounts for healthy singles this period that continue as healthy singles. There are \(S^{d}(1, x) \) such singles this period. They remain healthy singles if they do not successfully enter the long-term market represented by the first square bracket and if they either do not enter the short-term market or enter but do not get infected, represented by the second square bracket. The third line accounts for those who return as healthy singles from marriage. The first square brackets
gives the stock of individuals married to a partner of status $\hat{\phi}$ at the start of the period plus those singles who newly marry such a partner this period. They remain healthy with probability $1 - (1 - \gamma_u(\hat{\phi}))\chi(c)$, but the marriage breaks up with the probability in the square bracket on the fourth line. The final line accounts for the newborns.

Consider next the distribution of infected individuals without treatment next period:

\[
S'^d(0, x) = (1 - \delta) \times \{ \\
S^d(1, x)[1 - \Pi^d(1, x)] \sum_s \Pi^d_s(1, x) \hat{\theta}_s \chi(c) \\
+ \sum_{\phi, \bar{x}} \left[\mathcal{L}^d(1, \hat{\phi}; x, \bar{x}) + R_l(\hat{\phi}, \bar{c})\Pi^d(1, x)S^d(1, x) \right] (1 - \gamma_u(\hat{\phi}))\chi(c) \times \\
\left[1 - (1 - \delta)(1 - \alpha^\phi)(1 - \varepsilon) \right] \\
+ S^d(0, x)(1 - \alpha_0)[1 - \Pi^d(0, x)] \\
+(1 - \alpha_0) \sum_{\phi, \bar{x}} \left[\mathcal{L}^d(0, \hat{\phi}; x, \bar{x}) + R_l(\hat{\phi}, \bar{c})\Pi^d(0, x)S^d(0, x) \right] \times \\
\left[1 - (1 - \delta)(1 - \alpha^\phi)(1 - \varepsilon) \right] \} \tag{23}
\]

The first four lines capture the same elements as in the previous equation, but now healthy individuals only transit to state $\phi = 0$ if they get infected. Additionally, now individuals that are already infected may survive to the next period. Line five captures single infected individuals, which do not develop final stage symptoms with probability $1 - \alpha_0$ and do not enter the long-term market with probability $1 - \Pi^d(0, x)$, and therefore survive as infected individuals. Lines six and seven capture individuals that either started in marriage or got married, similar to lines three and four, but now these individuals are infected. Again they return as infected singles if they do not develop final stage symptoms and if the marriage does not survive.

Finally, the distribution of treated individuals next period is given by
\[
S^d(t, x) = (1 - \delta) \times \left\{ (1 - \alpha_t)S^d(t, x)[1 - \Pi^d t(t, x)] \\
+ (1 - \alpha_t) \sum_{\hat{\phi}, \hat{x}} \left[\mathcal{L}^d(t, \hat{\phi}; x, \hat{x}) + R_t(\hat{\phi}, \hat{\varepsilon})\Pi^d t(t, x)S^d(t, x) \right] \times \right. \\
\left[1 - (1 - \delta)(1 - \alpha_{\hat{\phi}})(1 - \varepsilon) \right \}
\]

(24)

The four lines here correspond to lines one, five, six and seven in the previous expression. The reason the intermediate lines are dropped is the temporary assumption that only individuals who were already in treatment at the beginning of the period are eligible for treatment next period. This will be adjusted later.

The mass of individuals with final stage symptoms next period is

\[
\mathcal{A} = \sum_{d, x} (1 - \delta) \left\{ (1 - \delta_2) \mathcal{A} + [S^d(\phi, x) + \sum_{\hat{\phi}, \hat{x}} \mathcal{L}^d(\phi, \hat{\phi}; x, \hat{x})] \alpha_{\phi} \right\}.
\]

(25)

It comprises those that started the period in the final stage and neither died of natural causes nor of AIDS related reasons. It also includes all other individuals that develop final stage symptoms, which occurs with probability \(\alpha_{\phi} \).

Now consider the distribution of long-term marriages next period. Consider a couple of two healthy individuals. The marriage survives if neither spouse dies of natural causes and the marriage does not break exogenously, and includes previous such marriages plus the new ones:

\[
\mathcal{L}^d(1, 1; \hat{x}) = (1 - \delta)^2(1 - \varepsilon) \times \\
\left[\mathcal{L}^d(1, 1; \hat{x}) + (1 - R_t(0, \hat{\varepsilon}) - R_t(t, \hat{\varepsilon}))\Pi^d t(1, x)S^d(1, x) \right].
\]

(26)

Consider marriages where the partner is infected or treated. The terms are similar to before, only that now the marriage breaks for one additional reason: if the partner develops symptoms (probability \(\alpha_{\phi} \)). The person also stays healthy with probability \(\left[1 - (1 - \gamma_u(\hat{\phi}))\chi(c) \right] \).
\[L^{id}(1, \hat{\phi}; x, \hat{x}) = (1 - \delta)^2 (1 - \varepsilon) (1 - \alpha_{\phi}) \left[1 - (1 - \gamma_u(\hat{\phi})) \chi(c) \right] \times \]
\[\left[L^d(1, \hat{\phi}; x, \hat{x}) + R_l(1, \hat{\phi}, \hat{c}) \Pi^d_i(1, x) S^d(1, x) \right]. \] (27)

Similar expressions obtain for partnerships where the individual under consideration is infected or treated but the partner from the other gender is healthy:

\[L^{id}(1, b; x, bx) = (1 - \delta)^2 (1 - \varepsilon) (1 - \alpha_{b}) \left[1 - (1 - \gamma_u(b)) \chi(c) \right] \times \]
\[\left[L^d(1, b; x, bx) + R_l(1, b, \hat{c}) \Pi^d_i(1, x) S^d(1, x) \right]. \] (28)

In the case where both spouses are infected or treated, it is no longer required to take into account the transmission of the disease, but there is a chance that either one will develop symptoms:

\[L^{id}(\phi, \hat{\phi}; x, \hat{x}) = (1 - \delta)^2 (1 - \varepsilon) (1 - \alpha_{\phi}) (1 - \alpha_{\phi}) \times \]
\[\left[L^d(\phi, \hat{\phi}; x, \hat{x}) + R_l(1, \hat{\phi}, \hat{c}) \Pi^d_i(\phi, x) S^d(\phi, x) \right]. \] (29)

Finally, introduce the *adjustments for changing discount factor and changing treatment status*, which are the mechanical parts of the model which do not involve many choices. Incorporate discount factor changes first: Let \(D^{nd} \) again be auxiliary distributions that map the previous ones \(D^{id} \) into those with changing discount factor. High discount factor individuals stay with a high discount factor, but also a fraction \(\eta \) of low discount factor individuals change to a high discount factor:

\[D^{\eta \beta}(\phi, ...) = D^{\beta \beta}(\phi, ...) + \eta D^{\eta \eta}(\phi, ...) \] (30)
\[D^{\mu \mu}(\phi, ...) = (1 - \eta) D^{\eta \eta}(\phi, ...) \] (31)

To give examples: \(S^{\eta \beta}(\phi, x) = S^{\beta \beta}(\phi, x) + \eta S^{\eta \beta}(\phi, x) \) which shows how the newborns end up with high discount factor at birth for \(\phi = 1 \). Another example would be \(L^{\eta \beta}(\phi, \hat{\phi}; x, \hat{x}) = (1 - \eta) L^{\eta \eta}(\phi, \hat{\phi}; x, \hat{x}) \).

The true distributions next period, which in steady state are the original distri-
butions from the beginning and therefore with slight abuse of notation did not receive a new name, are recovered by taking account changes in treatment status, since infected individuals with status 0 change to a treated status t with probability q:

$$S^d(1, x) = S^{nd}(1, x)$$
$$S^d(0, x) = S^{nd}(0, x)(1 - q)$$
$$S^d(t, x) = S^{nd}(0, x)q + S^{nd}(t, x)$$

$$L^d(1, 1, x, \hat{x}) = L^{nd}(1, 1, x, \hat{x})$$
$$L^d(0, 1, x, \hat{x}) = L^{nd}(0, 1, x, \hat{x})(1 - q)$$
$$L^d(0, 0, x, \hat{x}) = L^{nd}(0, 0, x, \hat{x})(1 - q)^2$$

$$L^d(1, t, x, \hat{x}) = L^{nd}(1, 0, x, \hat{x})q + L^{nd}(1, t, x, \hat{x})$$
$$L^d(t, 1, x, \hat{x}) = L^{nd}(0, 1, x, \hat{x})q + L^{nd}(t, 1, x, \hat{x})$$
$$L^d(1, t, x, \hat{x}) = L^{nd}(0, t, x, \hat{x})(1 - q) + L^{nd}(0, 0, x, \hat{x})(1 - q)q$$
$$L^d(t, 0, x, \hat{x}) = L^{nd}(t, 0, x, \hat{x})(1 - q) + L^{nd}(0, 0, x, \hat{x)q(1 - q}$$
$$L^d(t, t, x, \hat{x}) = L^{nd}(t, t, x, \hat{x}) + L^{nd}(0, t, x, \hat{x})q + L^{nd}(t, 0, x, \hat{x})q + L^{nd}(0, 0, x, \hat{x)q^2$$

The right hand side of these equations together with (22) - (31) fully describe the operator T in (10).
Figure 11: Male HIV Rate – Model vs. Data

Figure 12: Female HIV Rate – Model vs. Data