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Using in (2), one can get
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Note that, using the equation above, we can rewrite the term
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Rearranging the equation above,
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Using (9), we can rewrite the term

Also, using (10), we can write
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Using (11), (12) and (13) in (3),
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After a lot of algebra (see end of file),
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If L =0, there is a closed form solution for £. If not, we just need to solve for the

roots of a second degree polynomial. We should check if only one root is inside (0, 1).

“A lot of algebra”

We can rewrite (14) as
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2 0Old agents
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That is, we can solve the problem of the old agent by guessing x, computing 0 (x) and
verifying if (18) holds.

We need to be careful with the guesses that we make for x. First, x cannot be
negative or greater than w (which would imply that consumption is negative). Second,
x cannot be such that Z(m) is negative or greater than one.

Note that we can rewrite {(z) as

R 0 1/p
o) = |75 (@7 = (L+7)a)| 270, (21)

Using (21), we can see that (remember that p < 0)
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That is, for 2 between 0 and wy/(1 4 v), (x)/dz > 0. This and equations (22) and
(23) show that there is only one Z between 0 and @wv/(1 4 ) such that {(z) = 1.

Therefore, in the code our guesses of x will be between 0 and .



