An Equilibrium Model of the HIV/AIDS Epidemic: An Application to ART and Circumcision in Malawi

Jeremy Greenwood, UPenn
Philipp Kircher, Edinburgh and EUI
Cezar Santos, Getulio Vargas Foundation
Michèle Tertilt, Mannheim

HEC, June 2017
HIV is killing 2 million people annually worldwide.
 - 2.7 million new infections each year.

Most affected continent: Africa.

About 60% of all HIV+ in Africa are female, compared to about 30% in North America and Western Europe.

Reasons: most transmissions through heterosexual sex + higher transmission risk for women.

Policy debate: circumcision, ART, condom use, treating STDs, finding a vaccine.

What can economists add?
What We Do

- Build model of sexual behavior.
- Allow for behavioral responses and general equilibrium effects.
- Parameterize model to capture stylized features of sex, marriage, and HIV in Malawi.
- Focus on gender asymmetry in transmission.
- Use model to explore policies.
Main findings

- Model captures well cross-country data on circumcision and HIV.
- Benefits of circumcision likely much larger than extrapolating from field experiments would suggest.
- ART likely not behind the recent HIV decline in Malawi.
- Condom policy may backfire.
- Treating other STDs (reduction in transmission) would work well, even though it would not be measurable in field experiment.
Related Literature

- Few theoretical studies of HIV: Kremer (QJE 1996), Magruder (Demography 2011).
- Large literature using epidemiological simulations: ignore changes in risky behavior.
Environment

- Rational model of sexual behavior.
- Men and women.
- Risky behavior choices (modeled as search in 3 different markets):
 - sex vs. abstinence
 - casual vs. long-term relationships
 - condom use
- Heterogeneity:
 - People differ in degree of patience.
 - Stochastic aging: young vs. mature (also differ in patience).
 - Circumcised or not (permanent type).
 - On ART or not (only some experiments).
 - Healthy or HIV infected – with and w/o symptoms.
- HIV determined in equilibrium.
- HIV status realized at end of period (private information)
- Exogenous death and divorce, exogenous births.
Choose first, where to search (protected, unprotected, LT).

Searching for a partner is costly.

More search effort → improves odds of finding a partner, π.

In LT market:

$$V_l = \max_\pi \left[\pi \tilde{V}_l + (1 - \pi) V_s - C_l(\pi) \right],$$

where search cost is

$$C(\pi) = \frac{\omega}{1 + \kappa} \left(\frac{\pi}{\frac{1}{2} - \pi} \right)^{1 + \kappa}$$

Similar in the short term market.
Benefits from Search: Sex

- **Utility from sex:** $u > p$.
- **Sex in LT relationships:**
 - Always unprotected: u.
 - Additional utility benefit/cost: ℓ.
 - Sex every period until partner gets symptoms, exogenous break-up (prob. ξ) or own death.
Baseline non-transmission probability (for a male having unprotected sex with a female): γ_u
- Higher when male is circumcised.
- Higher when using a condom.
- Higher when partner is on ART treatment.
- Lower for women (except, no circumcised women).

Everyone gets (anonymously) tested and knows own infection status after one period: $\phi = 1, 0, t$.

Each period, infected people get treated with probability q (ART is an absorbing state).

Lag from infection to symptoms
- Probability of showing symptoms conditional on infection α (lower for treated people).

People with symptoms do not have sex (too sick).

Lag from symptoms to death: δ_2 (for tractability, couples die together).
Life-time Value of Unprotected Sex (w/o ART)

Value function (for infected men):

$$\tilde{V}_u^\beta(0, x) = \ln(y - t_u) + u + \beta \left\{ \alpha A + [1 - \alpha] V_i^\beta(0, x) \right\}$$

Value function (for healthy men):

$$\tilde{V}_u^\beta(1, x) = \ln(y - t_u) + u + \beta \left\{ \left[\hat{\phi} + (1 - \hat{\phi}) \gamma_u \chi(c) \right] V_i^\beta(1, x) \\
+ \left(1 - \left[\hat{\phi} + (1 - \hat{\phi}) \gamma_u \chi(c) \right] \right) V_i^\beta(0, x) \right\}$$

x: permanent type, including whether circumcised or not
y: period income
A: life-time value of a person with symptoms

Similar for women and when the person has protected sex.
All singles enter period with health status ϕ in $\{0,1,t\}$.

- Indicates search intensity choice at this node.
- Indicates sexual activity.

If no break-up,

- Match in long term market
- No match

Exogenous (ε) or endogenous (= partner symptoms) break-up

If infected,

- Symptoms (α), Value: A
- Exogenous death (δ)
- Stochastic Aging (η)
- Update status (ϕ'), treatment (q)

Protected
Unprotected

Stochastic Aging (η)

Choose π_u, π_p
Stationary Equilibrium

- Three markets: protected, unprotected, long term sex.
- Prices \((t_u, t_p, t_l)\) adjust to clear all three markets:
 - \# of men having sex in given market = \# of women having sex.
- Aggregate fractions of people (health/sick/treated/circumcised) entering each market consistent with individual optimization.
Numerical Analysis

- Model too complicated for analytical results.
- Instead, we use parameterized version of model
- Numerical benchmark that captures stylized features in Malawi
 - Some parameters are chosen based on direct data analogs.
 - Remaining parameters chosen to match some key moments
- Perform counterfactual analyses to study prevention policies:
 - male circumcision
 - anti-retroviral drugs
 - treating other STDs (or inventing a vaccine)
 - improving condoms
- Special focus on
 - importance of behavioral changes.
 - importance of general equilibrium effects.
Data sources:
- Most data is from DHS 2004 (including micro data).
- HIV specific parameters: from medical literature.
Parameterization - a priori

- quarterly model
- $\xi = 0.03$ (divorce prob.)
 - twice reported divorce risk (no polygyny nor affairs)
- $y = 320$ (quarterly income per working age person)
- $\delta = 0.006$ (non HIV-related death hazard)
- probability of HIV transmission (per act):
 - 0.0048 (for men unprotected sex)
 - double for women
 - reduced by 70% when using condoms
 - further reduced by 60% when circumcised (for men)
 - further reduced by 2/3 when partner on ART
 - scaled up to quarterly risk in model
- $\alpha = 0.025$ (10 yrs from infection to symptoms)
- $\delta_2 = 0.125$ (2 yrs from symptoms to death)
- 20% of males are circumcised
- No one is treated in benchmark
Parameterization - Calibration

Remaining parameters are chosen to match a set of targets:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>joy of protected sex</td>
</tr>
<tr>
<td>u</td>
<td>joy of unprotected sex</td>
</tr>
<tr>
<td>ℓ</td>
<td>extra benefit/cost of LT relationship</td>
</tr>
<tr>
<td>A</td>
<td>continuation value of life with symptoms</td>
</tr>
<tr>
<td>$[\beta_{min}, \beta_{max}]$</td>
<td>mature discount factor, assumed uniform</td>
</tr>
<tr>
<td>\bar{i}</td>
<td>further discount for young people</td>
</tr>
<tr>
<td>η</td>
<td>prob. of becoming mature</td>
</tr>
<tr>
<td>ω_{ST}</td>
<td>search cost in ST market (level)</td>
</tr>
<tr>
<td>ω_{LT}</td>
<td>search cost in LT market (level)</td>
</tr>
<tr>
<td>κ</td>
<td>search cost (curvature)</td>
</tr>
</tbody>
</table>
Model Fit (11 Moments)

<table>
<thead>
<tr>
<th>Observation</th>
<th>Data</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIV/AIDS rate, %</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>- Males</td>
<td>10</td>
<td>8.6</td>
</tr>
<tr>
<td>- Females</td>
<td>13</td>
<td>12.1</td>
</tr>
<tr>
<td>Fraction of all sex that is casual, %</td>
<td>18</td>
<td>16</td>
</tr>
<tr>
<td>Condom use for casual sex, %</td>
<td>39</td>
<td>33</td>
</tr>
<tr>
<td>% (of) Singles that had casual sex in past year</td>
<td>37</td>
<td>53</td>
</tr>
<tr>
<td>% Singles</td>
<td>33</td>
<td>48</td>
</tr>
<tr>
<td>% Married by age 22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Males</td>
<td>58</td>
<td>57</td>
</tr>
<tr>
<td>- Females</td>
<td>90</td>
<td>63</td>
</tr>
<tr>
<td>% Married by age 50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Males</td>
<td>100</td>
<td>98</td>
</tr>
<tr>
<td>- Females</td>
<td>100</td>
<td>98</td>
</tr>
<tr>
<td>% of deaths related to HIV</td>
<td>29</td>
<td>25</td>
</tr>
</tbody>
</table>
Non-targeted Moments

We also look at additional model implications.

- HIV rates by age.
- Timing of marriage.
- Singles by age.
- Cross-country data on circumcision.

Model works surprisingly well.
HIV Rates, by Age - Men vs. Women

![Graph showing HIV rates by age for men and women with model and data, smoothed curves.]
Fraction Currently Single, by Age

- Model
- Data

Age categories: 0, 0.2, 0.4, 0.6, 0.8, 1, 15, 20, 25, 30, 35, 40, 45, 50
Male Circumcision and HIV

- Circumcision rates vary across countries.
- Circumcised men are less susceptible to HIV.
- Cross-country data shows negative correlation HIV vs. circumcision.

\[y = -0.1509x + 0.1517 \]
\[y = -0.0508x + 0.113 \]
Regressions

Dependent variable: HIV rate
Number of countries: 32

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>Coefficient</th>
<th>Coefficient</th>
<th>Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>circumcision</td>
<td>-0.1122***</td>
<td>-0.07655**</td>
<td>-0.0796**</td>
<td>-0.064</td>
</tr>
<tr>
<td>Log GDP p.c.</td>
<td>0.0314***</td>
<td>0.0293***</td>
<td>0.0288***</td>
<td>0.0296***</td>
</tr>
<tr>
<td>ART</td>
<td>0.0816</td>
<td>0.104**</td>
<td>0.105*</td>
<td>0.098</td>
</tr>
<tr>
<td>syphilis</td>
<td>0.0025</td>
<td>0.0029</td>
<td>0.003</td>
<td>0.0045</td>
</tr>
<tr>
<td>muslim</td>
<td></td>
<td>-0.002</td>
<td>-0.00056</td>
<td>-0.0012</td>
</tr>
<tr>
<td>christian</td>
<td></td>
<td></td>
<td>-0.00039</td>
<td>-0.00065</td>
</tr>
<tr>
<td>condom price</td>
<td></td>
<td></td>
<td></td>
<td>-0.268*</td>
</tr>
<tr>
<td>R^2</td>
<td>0.72</td>
<td>0.73</td>
<td>0.74</td>
<td>0.79</td>
</tr>
<tr>
<td>N</td>
<td>32</td>
<td>31</td>
<td>31</td>
<td>23</td>
</tr>
</tbody>
</table>
We used evidence from field experiments as model input to determine what circumcision does to an individual man.

Note that using evidence on circumcised individuals to extrapolate what 100% circumcision would do, would lead to incorrect conclusions.

In our model, circumcising a small group of additional men: prevalence rate of 8%, so they are healthier than average (9%). But circumcising everyone would lead to an overall HIV rate of only 4%. i.e. half that.

Reason: compounding and fewer singles.

<table>
<thead>
<tr>
<th></th>
<th>benchmark</th>
<th>100% circumcision</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>not circ.</td>
<td>circumcised</td>
</tr>
<tr>
<td>%infected</td>
<td>9%</td>
<td>8%</td>
</tr>
<tr>
<td>casual sex</td>
<td>14%</td>
<td>22%</td>
</tr>
<tr>
<td>condom use</td>
<td>35%</td>
<td>27%</td>
</tr>
<tr>
<td>singles</td>
<td>49%</td>
<td>53%</td>
</tr>
</tbody>
</table>
Other Policy Experiments

- ART treatment
- Better condoms?
- Treating other STDs (or partial vaccine)
Anti-retroviral Therapy (ART)

- Introduced in Malawi in 2005.
- ART affects people in several ways:
 - feel better
 - live longer
 - less infectious to other people

ART in Malawi

![Graph showing the increasing percentage of infected on ART in Malawi from 1998 to 2016.](image-url)
Was ART successful in reducing HIV?

- Clearly HIV declined over time.
- From a govt report in Malawi: “Malawi’s rapid and successful Antiretroviral Therapy scale-up from 2004 to 2014 has critically influenced the trajectory of the HIV epidemic …”

![HIV prevalence graph](image-url)
Was ART successful in reducing HIV?

- Note that ART cannot be the whole story, as HIV started declining prior to the introduction of ART.
- Anticipation effects would go into the wrong direction.
- Still, ART may have contributed to declining HIV prevalence.
In model, infected people get treated with probability q (absorbing state).

- Treated people are less infectious to others (by factor $2/3$).
- They are also less likely to develop symptoms (by factor $1/2$), and accordingly live longer (10 years on average).

Increase q over time, in line with the data.
- Model gives, at various levels of treatment, long-term HIV rate.
- Upper bound on fraction of the HIV decline likely due to ART.
ART in the Model

- HIV-Data
- HIV-Model
- ART/sick

Graph showing trends over time.
But higher levels of ART promising

Reasons for the hump-shape:
- People engage in riskier behavior along all dimensions (more sex, less condoms, less marriage).
- Sex is also safer.
- Second effect dominates only if enough infected are treated.
More pleasurable condoms

Example: quadrupling condom pleasure (from 1.4 to 5.5)
- condom use almost doubles (32 to 59%)
- more people remain single (48 to 62%)
- more singles have sex (53 to 66%)
- HIV rate goes up by 60% (10 to 16%)
Reducing Transmission Risk (e.g. treatment of other STDs)

- singles engage in riskier behavior
- not captured in epid. experiment, thus “true” effect smaller.
- transmission risk lower not just for self, but also partners.
- typically not true in small field experiments. Thus benefits from large experiment much larger than extrapolating from field experiment.
- may explain why 8 of 9 studies of STD treatment delivered flat results (Padian et al, 2010).
Equilibrium model of sexual behavior.
Captures stylized features of sex, marriage, and HIV in Malawi.
Replicates cross-country relationship: HIV & circumcision.
Policy experiments:
 - Benefits of circumcision likely much larger than extrapolation from field experiments would suggest.
 - ART likely not behind the recent HIV decline in Malawi.
 - Condom policy may backfire.
 - Treating other STDs (reduction in transmission) would work well, even though it would not be measurable in field experiment.