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APPENDIX B: DATA

Most of the empirical moments are based on information collected from the interviews
of individuals conducted for the Malawi Demographic and Health Survey (MDHS) in
2004, carried out by the Malawi National Statistical Office. In this nationally representa-
tive survey, 11,698 women aged 15 to 49 and 3261 men aged 15 to 54 were interviewed.
Means are calculated using sample weights. For several figures, means are calculated by
age. Since men are underrepresented in the survey, separate means are calculated by sex,
and then averaged. Whenever sources other than the MDHS are used, it will be indicated.
More details on each figure follow. For the interested reader, the details also include the
variable names corresponding to each question.

• Figure 1a: HIV is defined as “Prevalence of HIV, total (% of population ages 15–
49).” ART is defined as “Antiretroviral therapy coverage (% of people living with HIV).”
HIV data come from UNAIDS and ART coverage is taken from the World Development
Indicators.

• Figure 4 is based on the MDHS for the years 1992, 1996, 2000, 2004, 2010, and 2015.
The question asked is “What can a person do (to avoid getting AIDS)?” and then various
options are given. For 1996, the question on mosquitoes was not asked in a consistent way,
and in 2015, no information related to whether abstinence reduces HIV risk was collected.
Fractions were computed based on the entire sample (males and females); sample weights
were used. The exact list of variables used is as follows. Abstinence: women: s808a (1992),
qa509a (1996), v754b (2000–2010), men: mv754b (1992), qma509a (1996), mv754b (2000–
2010). Condom use: women: s808c (1992), qa504 (1996), v754c (2000–2015) men: mv754c
(1992), qma504 (1996), mv754c (2000–2015). Mosquitoes: women: s804g (1992), v754jp
(2000–2015) men: sm504g (1992), mv754jp (2000–2015).

• Figure 6: HIV rate—men versus women, model versus data. In order to calculate the
HIV rates by age (MDHS 2004: v012/mv012) and gender, individual information from the
MDHS 2004 is matched with the HIV test results (MDHS 2004: hiv03) for those people
who agreed on doing the test along with the interview (since not everyone agreed, the
sample size is smaller here: 2,404 men and 2,864 women). The resulting HIV rates are
smoothed using a third-order polynomial.

• Figure 7: Fraction ever married—model versus data. The fraction of people who have
ever been married is derived by dividing the number of people who either are currently
married (including cohabitation) or have been formerly married by all people. The corre-
sponding question is “Have you ever been married or lived with a man/woman” (MDHS
2004: v/mv502).

• Figure 8: Sexual behavior by age—model versus data. Singles: Those men and women
who reported that they have never been married or are widowed, divorced (living or not
living together) are defined as singles (MDHS 2004: v/mv501).

Casual sex: To identify the fraction of sex that occurs in casual relationships, all men and
women are considered who had sex in the last year (MDHS 2004: v/mv529). These people
are asked with whom they had sex (MDHS 2004: v/mv767a). They are also asked whether
they had sex with a second (MDHS 2004: v/mv761b, v/mv767b) and third (MDHS 2004:
v/mv761c, v/mv767c) partner. If one of the sex partners was not the spouse or cohabiting
partner, then the sex in the last year is categorized as casual sex. Men in addition are
asked whether they have ever paid for sex (MDHS 2004: mv792). Those men who have
paid for sex in the last year are also defined as being active in the short-term market.

• Figure 9: Deaths by HIV/AIDS by age—model versus data. The data on deaths
caused by HIV/AIDS are taken from Bowie (2006), pp. 31–42. He reported the frac-
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tion of HIV/AIDS related deaths by age groups, based on the WHO Global Burden of
Disease Malawi from 2002.

• Table I: Parameters Chosen Outside the Model. All sources are described in the text.
• Table III: Targeted Moments. The data on the prevalence of HIV/AIDS in Malawi

derive from the Demographic and Health Surveys’ (MDHS) Final Survey for Malawi
in 2004. See MDHS (2004, Table 12.3). The fraction of sex that is casual is the pro-
portion of people—averaged across men and women—who had sex with a non-marital,
non-cohabiting partner during the last year, conditional on being sexually active, and is
taken from MDHS (2004, Table 11.9). Condom usage for short-term sex also derives from
MDHS (2004, Table 11.9)—and is averaged across men and women. The fraction of sin-
gles who have casual sex is reported in MDHS (2004, Tables 6.71 and 6.72) and corre-
sponds to the weighted average of never married and divorced/separated/widowed men
and women. The proportion of the population that is single is contained in MDHS (2004,
Table 6.1), where single is interpreted as anyone who is not currently married nor cohab-
iting, averaged across men and women. The fraction of males and females that has ever
been married by a certain age is the same as in Figure 7. The World Health Organisation
(2008) reports that 29% of all deaths in Malawi in 2004 were due to HIV/AIDS.

• Table IV: The cross-country circumcision data come from Ahuja, Wendell, and
Werker (2009). The statistics for HIV rates come from UNAIDS, while the numbers for
GDP per capita and ART coverage come from the World Bank Development Indicators.
The rates for syphilis seropositivity relate to data among antenatal care attendees from
the WHO Global Health Observatory. The fractions of populations of different religions
are given by the Global Religious Futures Project of the Pew Research Center. Condom
prices for different countries are reported in the Global Directory of Condom Social Mar-
keting Projects and Organisations (UNAIDS).

• Table X: Incidence and prevalence numbers are taken from UNAIDS. All numbers
on sexual behavior are computed from the MDHS. The 2004 numbers are identical to
those in Table III and were calculated as described above. The numbers for 1996 were
computed in exactly the same way using data from the MDHS 1996 instead. Model num-
bers are based on the model simulations.

APPENDIX C: THEORY

C.1. Value Functions for Young Individuals, d = ι

The value functions for young individuals follow a similar structure as those for old
individuals, namely, equations (1) to (6). The required adjustments are outlined in the
main body in connection with (1).

In particular, for young abstinent individuals of health status φ, the analog to (1) re-
places the high discount factor, β, with the low discount factor, ι, and treats continuation
values as the average of the continuation with a low and a high discount factor, so that

Ṽ ι
a (φ�x) = ln(y)+ αφιA

+ (1 − αφ)ι

{
Q(φ)

[
ηV β

l (t�x)+ (1 −η)V ι
l (t� x)

]
+ [

1 −Q(φ)
][
ηV β

l (φ�x)+ (1 −η)V ι
l (φ�x)

]} � (9)
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Similarly, for short-term sex, either for infected or treated individuals (φ= 0� t), the ana-
log to (2) is

Ṽ ι
s (φ�x) = ln(y − zs)+pI(s)+ u

[
1 − I(s)

] + αφιA

+ (1 − αφ)ι

{
Q(φ)

[
ηV β

l (t�x)+ (1 −η)V ι
l (t� x)

]
+ [

1 −Q(φ)
][
ηV β

l (φ�x)+ (1 −η)V ι
l (φ�x)

]} � (10)

for s = p�u. For young healthy individuals (φ= 1), the analog to (3) is

Ṽ ι
s (1�x) = ln(y − zs)+pI(s)+ u

[
1 − I(s)

]
+

∑
φ̂

Rs(φ̂)
[
1 − γs(φ̂)

]
×χ(c)ι

{
q
[
ηV β

l (t�x)+ (1 −η)V ι
l (t� x)

]
+ (1 − q)

[
ηV β

l (0�x)+ (1 −η)V ι
l (0�x)

]}
+

{
1 −

∑
φ̂

Rs(φ̂)
[
1 − γs(φ̂)

]
χ(c)

}
× ι

[
ηV β

l (1�x)+ (1 −η)V ι
l (1�x)

]
� (11)

For long-term sex, note that the transition probabilities Υ(φ′� φ̂′|φ�φ̂� c� ĉ) in Ap-
pendix C.2 are not affected by the discount factor, and therefore the young individual’s
analog of (6) is

Ṽ ι
l (φ� φ̂� ĉ� x) = ln(y − zl)+ u+ l + αφιA

+ (1 − αφ)(1 − ε)(1 − δ)(1 − αφ̂)ι

×
∑
φ′�φ̂′

Υ
(
φ′� φ̂′|φ�φ̂� c� ĉ

)[
ηṼ β

l

(
φ′� φ̂′�x

)
+ (1 −η)Ṽ ι

l

(
φ′� φ̂′�x

)]

+ (1 − αφ)
[
1 − (1 − ε)(1 − δ)(1 − αφ̂)

]
ι

×
∑
φ′�φ̂′

Υ
(
φ′� φ̂′|φ�φ̂� c� ĉ

)[
ηV β

l

(
φ′�x

)
+ (1 −η)V ι

l

(
φ′�x

)] � (12)

C.2. Transition Probabilities in Long-Term Relationships

The transition probabilities, Υ(φ′� φ̂′|φ�φ̂� c� ĉ), from the situation where a relation-
ship is currently characterized by the quadruple (φ� φ̂� c� ĉ) to one where the couple’s
health status next period is (φ′� φ̂′), are now presented. Start with the situation where the
person is currently healthy (φ = 1) but his partner is infected (φ̂ ∈ {0� t}). The following
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lists all possible cases for this situation:

Υ(1� t|1� φ̂� c� ĉ)= {
1 − [

1 − γu(φ̂)
]
χ(c)

}
Q(φ̂);

Υ(1�0|1� φ̂� c� ĉ)= {
1 − [

1 − γu(φ̂)
]
χ(c)

}[
1 −Q(φ̂)

];
Υ(0� t|1� φ̂� c� ĉ)= [

1 − γu(φ̂)
]
χ(c)(1 − q)Q(φ̂);

Υ(0�0|1� φ̂� c� ĉ)= [
1 − γu(φ̂)

]
χ(c)(1 − q)

[
1 −Q(φ̂)

];
Υ(t� t|1� φ̂� c� ĉ)= [

1 − γu(φ̂)
]
χ(c)qQ(φ̂);

Υ(t�0|1� φ̂� c� ĉ)= [
1 − γu(φ̂)

]
χ(c)q

[
1 −Q(φ̂)

]
�

(13)

The chance that the individual remains healthy is given by {1−[1−γu(φ̂)]χ(c)}, while the
odds that they will not are [1 − γu(φ̂)]χ(c). In the latter case, the person will get treated
with probability q and not with 1 − q. The term Q(φ̂) reflects the odds of the partner
being treated, while the one 1 −Q(φ̂) gives the odds that the companion is not.

The symmetric probabilities for when the partner is healthy (φ̂ = 1) but the individual
is infected or treated (φ= 0� t) are

Υ(t�1|φ�1� ĉ� c)= {
1 − [

1 − γ̂u(φ)
]
χ(̂c)

}
Q(φ);

Υ(0�1|φ�1� ĉ� c)= {
1 − [

1 − γ̂u(φ)
]
χ(̂c)

}[
1 −Q(φ)

];
Υ(t�0|φ�1� ĉ� c)= [

1 − γ̂u(φ)
]
χ(̂c)(1 − q)Q(φ);

Υ(0�0|φ�1� ĉ� c)= [
1 − γ̂u(φ)

]
χ(̂c)(1 − q)

[
1 −Q(φ)

];
Υ(t� t|φ�1� ĉ� c)= [

1 − γ̂u(φ)
]
χ(̂c)qQ(φ);

Υ(0� t|φ�1� ĉ� c)= [
1 − γ̂u(φ)

]
χ(̂c)q

[
1 −Q(φ)

]
�

(14)

In the above equations, the term [1 − γ̂u(φ)]χ(̂c) gives the odds that the partner will
become infected.

Next, both partners might be infected (φ ∈ {0� t} and φ̂ ∈ {0� t}), in which case a healthy
future is no longer an option. The only question that remains is whether the future sees
treatment or not, so that

Υ
(
φ′� φ̂′|φ� φ̂� c� ĉ

) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
[
1 −Q(φ)

]
Q(φ̂)� for

(
φ′� φ̂′) = (0� t);[

1 −Q(φ)
][

1 −Q(φ̂)
]
� for

(
φ′� φ̂′) = (0�0);

Q(φ)Q(φ̂)� for
(
φ′� φ̂′) = (t� t);

Q(φ)
[
1 −Q(φ̂)

]
� for

(
φ′� φ̂′) = (t�0)�

(15)

The last remaining case is where both partners are currently healthy. Here, Υ(1�1|1�1�
c� ĉ)= 1, implying that Υ(φ′� φ̂′|1�1� c� ĉ)= 0, when φ′ ∈ {0� t} and/or φ̂′ ∈ {0� t}.

C.3. Stationary Equilibrium

A stationary equilibrium for the developed framework is formulated now. First, the
equilibrium distributions for singles will be specified. Let Sd(φ;x) represent the (non-
normalized) stationary distribution of singles at the beginning of a period. It denotes the
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measure of type-x singles that have health status φ and discount factor d. Similarly, let
Ld(φ� φ̂;x� x̂) stand for the measure of long-term relationships for type-x individuals
with health status φ and discount factor d who are coupled with a partner of type x̂ and
health status φ̂. Given some distributions S and L of singles and married people, the
sexual behavior of individuals according to their decision rule Π [Πd

r =Πd
r (φ�x) for each

status and type] gives rise to a new distribution of singles and married people, which can
be described by a mapping T that is characterized fully in Section C.4. In steady state,
the distributions of singles and married people remain constant, and are determined by a
fixed point of this operator:(

Sβ�Lβ�S ι�Lι
) = T

(
Sβ�Lβ�S ι�Lι;Π)

� (16)

Next, the expectations over the fraction of types in each market have to be consistent
with the aggregation of individual choices in equilibrium. It is now useful to introduce the
subscript g (for g = f�m) to a function or variable to denote the gender of the person in
question. The number of market participants for sexual activity r (= l�p�u), who are of
gender g, type-x with status φ, and discount factor d, is given by

Md
g�r(φ�x) ≡

{
Πd

g�l(φ�x)Sd
g (φ;x)� if r = l�[

1 −Πd
g�l(φ�x)

]
Πd

g�r(φ�x)Sd
g (φ;x)� if r = p�u�

(17)

The number of market participants equals the number of singles times their probability
of participating in a particular market. For the short-term market, this also entails the
probability of not previously finding a long-term partner within the current period. Then
the fraction Rs�r(φ) of agents with health status φ in market s of gender g is given by

Rg�s(φ)=

∑
d

∑
x

Md
g�s(φ�x)∑

d

∑
x

∑
φ′

Md
g�s

(
φ′�x

) � for all g and s ∈ {p�u}� (18)

For the long-term market, the relevant fraction is given by

Rg�l(φ� c)=

∑
d

∑
x

Md
g�l(φ�x)I

(
c(x)= c

)
∑
d

∑
x

∑
φ′

Md
g�l

(
φ′�x

) � for all g� (19)

where c(x) is a slight abuse of notation that denotes the circumcision status of the agent
that is contained in his or her type x. The function I(·) is an indicator function that
takes the value of 1 if its argument is true. Note that Rf�s(φ) and Rf�l(φ� c) denote the
distributions among women, which are relevant for men when determining their odds of
getting infected. Similarly, Rm�s(φ) and Rm�l(φ� c) refer to the odds among men, but are
relevant for women when making their decisions.

Market clearing requires that the number of female participants equals the number of
male participants in any market:∑

d

∑
x

∑
φ

Md
f�r(φ�x) =

∑
d

∑
x

∑
φ

Md
m�r(φ�x)� for all r� (20)
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Additionally, a transfer paid by one gender on a market is a transfer earned by the other
so that

zf�r + zm�r = 0� for all r� (21)

This leads to the following formal definition of equilibrium.

DEFINITION: A stationary equilibrium is described by a set of decision rules for search
effort, Πd

g�r(φ�x), a set of transfer payments, zg�r , a set of stationary distributions,
Sd

g (φ;x) and Ld
g(φ� φ̂;x� x̂), and status/type prevalence in each market, Rg�s(φ) and

Rg�l(φ� c), for all d = {ι�β}, g ∈ {f�m}, r ∈ {l�p�u}, s ∈ {p�u}, such that:
1. The decision rules for search intensities, Πd

g�r(φ�x), satisfy the appropriately gender
subscripted versions of the generic problems (4) and (8), taking as given transfer payments
and HIV/AIDS prevalence rates.

2. The stationary distributions, Sd
g (φ;x) and Ld

g(φ� φ̂;x� x̂), solve the appropriately
gender subscripted version of (16).

3. The distributions over health status for each market, Rg�s(φ) and Rg�l(φ� c), are
given by (18) and (19) using (17).

4. The transfer payments, zr�g, are such that the markets for all types of relationships
clear according to (20). Additionally, the flow of transfers across the genders must balance
as specified by (21).

C.4. Stationary Distributions

The transition operator T defined in Section C.3 is now fully characterized. Before
starting, recall that I(·) is an indicator function that takes the value of 1 if its argument
is true, and 0 otherwise. Focus on a particular gender so that the gender subscript can be
omitted. Again, Sd(φ;x) denotes the beginning-of-period mass of singles with discount
factor d, health status φ, and type x. Next, Ld(φ� φ̂;x� x̂) represents the beginning-of-
period measure of long-term relationships for individuals of type x with health status
φ and discount factor d who are coupled with a partner of type x̂ and health status φ̂.
Finally, A is the mass of individuals with the final symptoms of AIDS. The sexual behavior
of individuals is governed by their decision rules, πd

r = Πd
r (φ�x).

Assume temporarily that only people who are of health status φ = t will be treated next
period. Moreover, suppose that the individual’s discount factor does not change. Given
the beginning of period distributions Sd , Ld , and A, one can compute the distributions at
the beginning of next period under these assumptions. Call these S ′d , L′d , and A′. These
will be adjusted subsequently for changing treatment status and discount factors. Before
proceeding, define the following variable to represent the infectiousness of each short-
term market:

θ̂s =
∑
φ̂

Rs(φ̂)
[
1 − γs(φ̂)

]
� for s ∈ {p�u}� (22)

First consider next period’s distribution of single individuals. Take up first the distribution
of healthy singles next period:

S ′d(1�x) = (1 − δ)

×
{
Sd(1�x)

[
1 −Πd

l (1�x)
]{

1 −Πd
p(1�x)−Πd

u(1�x)
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+
∑
s

Πd
s (1�x)

[
1 − θ̂sχ(c)

]}
+

∑
φ̂�x̂

[
Ld(1� φ̂;x� x̂)+Rl(φ̂� ĉ)Π

d
l (1�x)Sd(1�x)

]{
1 − [

1 − γu(φ̂)
]
χ(c)

}
× [

1 − (1 − δ)(1 − αφ̂)(1 − ε)
]}

+μ(x)I(d = ι)� (23)

Singles survive into the next period with probability (1 − δ), as captured by the first line.
The second and third lines account for healthy singles this period that continue as healthy
singles next period. There are Sd(1�x) such singles this period. They remain healthy sin-
gles if they do not successfully enter the long-term market, which is represented by the
term in the first bracket, and if they either do not enter the short-term market or enter
but do not get infected, as presented by the terms in braces. The fourth and fifth lines
account for those who exit from marriage as healthy singles. The terms in the first bracket
give the stock of individuals married to a partner of status φ̂ at the start of the period
plus those singles who newly marry such a partner this period. They remain healthy with
probability {1 − [1 − γu(φ̂)]χ(c)}, but the marriage breaks up with the probability in the
bracket on the fifth line, [1 − (1 − δ)(1 − αφ̂)(1 − ε)]. The final line is the inflow of new-
borns.

Consider next the distribution of infected individuals without treatment next period:

S ′d(0�x) = (1 − δ)

×
{
Sd(1�x)

[
1 −Πd

l (1�x)
]∑

s

Πd
s (1�x)θ̂sχ(c)

+
∑
φ̂�x̂

[
Ld(1� φ̂;x� x̂)+Rl(φ̂� ĉ)Π

d
l (1�x)Sd(1�x)

][
1 − γu(φ̂)

]
χ(c)

× [
1 − (1 − δ)(1 − αφ̂)(1 − ε)

]
+ Sd(0�x)(1 − α0)

[
1 −Πd

l (0�x)
]

+ (1 − α0)
∑
φ̂�x̂

[
Ld(0� φ̂;x� x̂)+Rl(φ̂� ĉ)Π

d
l (0�x)Sd(0�x)

]
× [

1 − (1 − δ)(1 − αφ̂)(1 − ε)
]}

� (24)

The first four lines detail the same elements as in the previous equation, but now healthy
individuals only transit to the untreated infected state, φ = 0. Line five captures currently
infected singles, who do not develop final-stage symptoms with probability 1 − α0 and
who do not enter the long-term market with probability 1 −Πd

l (0�x), and therefore sur-
vive as infected singles. Lines six and seven account for individuals that either started in
marriage or got married, similar to lines three and four, except now these individuals are
currently infected. Again, they return as infected singles, if they do not develop final-stage
symptoms, and if the marriage does not survive.
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Finally, the distribution of treated individuals next period is given by

S ′d(t� x) = (1 − δ)

×
{
Sd(t� x)(1 − αt)

[
1 −Πd

l (t�x)
]

+ (1 − αt)
∑
φ̂�x̂

[
Ld(t� φ̂;x� x̂)+Rl(φ̂� ĉ)Π

d
l (t� x)Sd(t� x)

]
× [

1 − (1 − δ)(1 − αφ̂)(1 − ε)
]}

� (25)

The four lines here correspond to lines one, five, six, and seven in the previous expression.
The reason the intermediate lines are dropped is the temporary assumption that only
individuals who were already in treatment at the beginning of the period are eligible for
treatment next period. This will be adjusted later.

The mass of individuals with final-stage symptoms next period is

A=
∑
d�φ�x

(1 − δ)

{
(1 − δ2)A+

[
Sd(φ�x)+

∑
φ̂�x̂

Ld(φ� φ̂�x� x̂)

]
αφ

}
� (26)

It comprises those that started the period in the final stage and neither died of natural
causes nor of AIDS-related reasons. It also includes all other individuals who develop
final-stage symptoms, which occurs with probability αφ.

Now consider the distribution of long-term marriages next period for type-x individuals
with health status φ and discount factor d who are coupled with a type-x̂ partner with
health status φ̂. Start with a marriage between two healthy individuals. The marriage
survives if neither spouse dies of natural causes or the marriage does not break up exoge-
nously. The stock of marriages next period includes marriages in the current period made
up from both old and new ones. The mass of such marriages next period is

L′d(1�1;x� x̂)
= (1 − δ)2(1 − ε)

× {
Ld(1�1;x� x̂)+ [

1 −Rl(0� ĉ)−Rl(t� ĉ)
]
Πd

l (1�x)Sd(1�x)
}
� (27)

Next, move onto the case where the partner is infected or treated. The terms are
similar to before, only now marriages break up for one additional reason, namely,
the partner develops AIDS (probability αφ̂). The person stays healthy with probability
{1 − [1 − γu(φ̂)]χ(c)}. So,

L′d(1� φ̂;x� x̂) = (1 − δ)2(1 − ε)(1 − αφ̂)
{
1 − [

1 − γu(φ̂)
]
χ(c)

}
× [

Ld(1� φ̂;x� x̂)+Rl(φ̂� ĉ)Π
d
l (1�x)Sd(1�x)

]
� (28)

A similar expression obtains for partnerships where the individual under consideration is
infected or treated but the partner is healthy:

L′d(φ�1;x� x̂) = (1 − δ)2(1 − ε)(1 − αφ)
{
1 − [

1 − γ̂u(φ)
]
χ(̂c)

}
× [

Ld(φ�1;x� x̂)+Rl(1� ĉ)Πd
l (φ�x)Sd(φ�x)

]
� (29)
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In the case where both spouses are infected or treated, there is no longer the need to take
into account the transmission of the disease. Now there is a chance that either person will
develop symptoms. So,

L′d(φ� φ̂;x� x̂) = (1 − δ)2(1 − ε)(1 − αφ)(1 − αφ̂)

× [
Ld(φ� φ̂;x� x̂)+Rl(φ̂� ĉ)Π

d
l (φ�x)Sd(φ�x)

]
� (30)

Finally, introduce the adjustments for a changing discount factor and changing treatment
status, which are mechanical parts of the model that do not involve any choices. Incorpo-
rate discount factor changes first. To do this, let D′′d represent generic auxiliary distribu-
tions that result from incorporating the transitions from the previous D′d due to changing
discount factors. High-discount-factor individuals stay with a high discount factor, but
low-discount-factor people switch to a high discount factor with probability η. Hence,

D′′β(φ� � � �) = D′β(φ� � � �)+ηD′ι(φ� � � �)� (31)

D′′ι(φ� � � �) = (1 −η)D′i(φ� � � �)� (32)

To give examples, S ′′β(φ�x) = S ′β(φ�x)+ηS ′ι(φ�x) counts the number of type-x singles
of health status φ that end up with the high discount, β. Another example would be
L′′ι(φ� φ̂;x� x̂)= (1 −η)L′ι(φ� φ̂;x� x̂).

The analysis focuses on steady states for the model. Therefore, the fixed point of the
operator T in (16) is being sought. The stationary distributions for singles and marrieds
can now be recovered by taking into account changes in treatment status, since infected
individuals with status 0 change to a treated status t with probability q:

Sd(1�x) = S ′′d(1�x)�

Sd(0�x) = S ′′d(0�x)(1 − q)�

Sd(t� x) = S ′′d(0�x)q+ S ′′d(t� x)�

Ld(1�1�x� x̂) = L′′d(1�1�x� x̂)�

Ld(1�0�x� x̂) = L′′d(1�0�x� x̂)(1 − q)�

Ld(0�1�x� x̂) = L′′d(0�1�x� x̂)(1 − q)�

Ld(0�0�x� x̂) = L′′d(0�0�x� x̂)(1 − q)2�

Ld(1� t� x� x̂) = L′′d(1�0�x� x̂)q+L′′d(1� t� x� x̂)�

Ld(t�1�x� x̂) = L′′d(0�1�x� x̂)q+L′′d(t�1�x� x̂)�

Ld(0� t� x� x̂) = L′′d(0� t� x� x̂)(1 − q)+L′′d(0�0�x� x̂)(1 − q)q�

Ld(t�0�x� x̂) = L′′d(t�0�x� x̂)(1 − q)+L′′d(0�0�x� x̂)q(1 − q)�

Ld(t� t� x� x̂) = L′′d(t� t� x� x̂)+L′′d(0� t� x� x̂)q+L′′d(t�0�x� x̂)q+L′′d(0�0�x� x̂)q2�

The right-hand sides of these equations together with (23) to (32) fully describe the fixed
point of the operator T in (16).
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APPENDIX D: DETAILS ON MODEL EXTENSIONS

D.1. The Diffusion of Better Information

To capture uninformed individuals, consider a type-x person with i = 0. Let s̊ ∈ {a�p�u}
and define I̊(s̊)= 1, for s̊ = p, and I̊(s̊)= 0, otherwise. Likewise, define J(s̊)= 0, if s̊ = a,
and J(s̊)= 1, otherwise. If healthy, the value from short-term sex, for s̊ = {a�u�p}, is now
given by

Ṽ β

s̊ (1�x) = ln(y − zs̊)+ {
pI̊(s̊)+ u

[
1 − I̊(s̊)

]}
J(s̊)

+
∑
φ̂

Ru(φ̂)
[
1 − γu(φ̂)

]
β

[
qV β

l (t� x)+ (1 − q)V β
l (0�x)

]
+

{
1 −

∑
φ̂

Ru(φ̂)
[
1 − γu(φ̂)

]}
βV β

l (1�x)� (33)

where za = 0. Compared to the value function for informed individuals (3), uninformed
people perceive all sex as being as risky as unprotected sex without circumcision. In the
case of abstinence, the uninformed now worry about infection even when they do not have
sex—cf. (1).

In the long-term market, an uninformed individual thinks that transmissions are gov-
erned as if people are not circumcised. That means that, for a uniformed type-x individual
(so that i = 0),

Ṽ β
l (φ� φ̂� ĉ� x)

= ln(y − zl)+ u+ l + αφβA

+ (1 − αφ)(1 − ε)(1 − δ)(1 − αφ̂)β
∑
φ′�φ̂′

Υ
(
φ′� φ̂′|φ� φ̂�0�0

)
Ṽ β
l

(
φ′� φ̂′� ĉ� x

)
+ (1 − αφ)

[
1 − (1 − ε)(1 − δ)(1 − αφ̂)

]
β

∑
φ′�φ̂′

Υ
(
φ′� φ̂′|φ� φ̂�0�0

)
V β
l

(
φ′�x

)
�

(Note that c and ĉ have been set to 0 in the transition probability Υ .) Similar adjust-
ments need to be made for young uninformed type-x individuals. Now,

Ṽ ι
s̊ (1�x) = ln(y − zs̊)+ {

pI̊(s̊)+ u
[
1 − I̊(s̊)

]}
J(s̊)

+
∑
φ̂

Ru(φ̂)
[
1 − γu(φ̂)

]
ι

{
q
[
ηV β

l (t� x)+ (1 −η)V ι
l (t� x)

]
+ (1 − q)

[
ηV β

l (0�x)+ (1 −η)V ι
l (0�x)

]}

+
{

1 −
∑
φ̂

Ru(φ̂)
[
1 − γu(φ̂)

]}
ι
[
ηV β

l (1�x)+ (1 −η)V ι
l (1�x)

]
�

for s̊ = {a�u�p}. Last, the value function for a young uninformed individual in a long-term
relationship is

Ṽ ι
l (φ� φ̂� ĉ� x) = ln(y − zl)+ u+ l + αφιA

+ (1 − αφ)(1 − ε)(1 − δ)(1 − αφ̂)ι
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TABLE XI

IMPROVED INFORMATION—MODEL VERSUS DATA

Condoms Circumcision ART STDs

Bench. p = 5�5 100% q = 0�01 q = 0�075 γmu = 0�9

Panel (a): 1996 benchmark
HIV prevalence, % 14�4 20�7 4�5 12�7 7�0 11�1
Sex that is casual, % 19�8 34�6 26�2 21�6 35�0 20�2
Condom use (singles), % 27�9 48�8 25�8 26�4 26�0 26�4
Fraction of singles, % 47�4 58�9 50�3 47�5 58�1 46�2
Non-abstinent singles, % 66�8 72�2 82�1 73�1 86�1 71�7

Panel (b): 2004 benchmark
HIV prevalence, % 10�3 15�8 5�6 11�3 8�1 9�5
Sex that is casual, % 15�7 34�0 28�9 20�5 41�5 18�7
Condom use (singles), % 32�8 59�2 22�4 27�2 24�1 27�6
Fraction of singles, % 48�0 62�4 56�7 51�1 65�7 49�6
Non-abstinent singles, % 53�6 66�4 75�6 62�5 83�6 60�3

×
∑
φ′�φ̂′

Υ
(
φ′� φ̂′|φ�φ̂�0�0

)[
ηṼ β

l

(
φ′� φ̂′�x

)
+ (1 −η)Ṽ ι

l

(
φ′� φ̂′�x

)]

+ (1 − αφ)
[
1 − (1 − ε)(1 − δ)(1 − αφ̂)

]
ι

×
∑
φ′�φ̂′

Υ
(
φ′� φ̂′|φ�φ̂�0�0

)[
ηV β

l

(
φ′�x

)
+ (1 −η)V ι

l

(
φ′�x

)] �
Table XI reports the results of selected policy experiments using the environment with

uninformed individual as a starting point—Panel (a): 1996 benchmark. For ease of com-
parison, the table also reports the results using the benchmark calibration—Panel (b):
2004 benchmark. As discussed in Section 6, in general, policies implemented when there
are uninformed agents tend to have stronger effects. The reason is that uninformed agents
do not change their behavior in response to the policy change.

D.2. Fertility

This little appendix describes how the model is parameterized when there is hetero-
geneous utility for fertility within marriage, as described in Section 5.3. Note that, con-
ditional on an individual’s circumcision status, there is only one source of permanent
heterogeneity in the benchmark model: the time discount factors, β and ι. Since there is
a one-to-one correspondence between β and ι, think about β as summarizing this hetero-
geneity. To keep the computational complexity fixed, leave the number of types constant.
That is, for each type-x person with a different discount factor, β, assign a different level
of utility from fertility f (x); again, f (x) is really just changing with β. Now, the instanta-
neous utility from a long-term relationship is given by u+ l + f (x).

Assume a quadratic form for the utility from fertility such that f (x) = θ0 + θ1β+ θ2β
2,

regardless of the value for c and ι. Note that θ0 and l cannot be separately identified
given the linear form of utility. Thus, three values must be calibrated: θ0 + l, θ1, and
θ2. These are picked such that the new model fits the baseline data targets as closely as
possible. The resulting parameters are: θ0 = 28,207, θ1 = −58,380, and θ2 = 30,201. The
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TABLE XII

CALIBRATION—FERTILITY

Model Model
Observation Data Benchmark w./Fertility

HIV prevalence, % 11�8 10�3 10�0
Males 10 8�6 8�3
Females 13 12�1 11�8

Sex that is casual, % (of all) 18 16 18
Condom use for casual sex, % 39 33 29
Singles that had casual sex in past year, % 47 54 65
Singles, % 33 48 47
Married by age 22, %

Males 58 57 54
Females 90 63 58

Married by age 50, %
Males 100 98 78
Females 100 98 88

Deaths related to HIV, % 29 25 32

fertility benefit f (x) ranges from −1�55 to 21.23. Table XII reports results from this new
parameterization.

APPENDIX E: LIFE-CYCLE IMPLICATIONS

Figure 6 plots HIV/AIDS prevalence by age.43 Both the data and model agree on a
hump-shaped infection pattern, despite the fact that individuals in the model become
sexually active earlier than is observed in the Malawian data, which shifts the model’s
life-cycle predictions on HIV/AIDS infections to the left. The hump-shaped pattern is
explained by two opposing forces. First, the rise in HIV/AIDS infection is due to the fact
that older people have been sexually active for a longer period of time. Therefore, a larger
percentage of the older population is infected with HIV/AIDS. Second, people who are
infected early in life will die before they make it to old age. Put differently, people who
have made it to old age must be those who have engaged in less risky sexual behavior and
so are less likely to be infected with HIV/AIDS. This second effect explains the eventual
drop in HIV/AIDS prevalence seen at older ages. Figure 6 also illustrates the differential
patterns of infection between the sexes. The figure shows that women get infected earlier
than men, in both the data and model.

Figure 7 compares the fraction of the population that has ever married in the model
versus the data. The model generates the earlier marriage of women (relative to men) via
their higher infection risk. Men eventually “catch up,” and by age 50 almost everyone is
married, in both the data and model.

The model also does a very nice job of matching the decline in risky activity over the
life cycle. Older people are less likely to be single; see Figure 8. As people age, they are
thus less likely to engage in casual sex; this is also reported in Figure 8. The fact that the
discount factor stochastically rises with age helps to generate this pattern.

An additional prediction of the model relates to the causes of death, since individuals
may die either due to HIV/AIDS or due to other natural causes. Figure 9 compares the

43The data are fitted with a third-order polynomial. The somewhat choppy raw data are due to the small
sample sizes.
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FIGURE 6.—HIV prevalence rate—men versus women, model versus data.

model prediction over the life cycle with its data counterpart. Both the data and model
exhibit a hump-shaped pattern of HIV/AIDS-caused deaths; this is consistent with the
hump-shaped pattern of infection rates.

APPENDIX F: ROBUSTNESS

This appendix provides some sensitivity analysis regarding the parameters estimated in
Section 4. Recall that 11 parameters were chosen by fitting the model to a specific set
of data moments from Malawi. These are listed on the different rows of Tables XIII and
XIV. Each of these two tables has three columns besides the first that lists the parameters.
The column labeled “HIV—Benchmark” provides the HIV prevalence rate when the pa-

FIGURE 7.—Fraction of population ever married—model versus data.
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FIGURE 8.—Sexual behavior by age—model versus data.

rameter of each corresponding row is changed by 1% (Table XIII) or 10% (Table XIV).44

The column “�HIV—Circumcision (50%)” reports the change in the percentage HIV
rate under the intervention that circumcises 50% of the males in the economy. Finally,
the last column (�HIV—ART (q = 5%)) presents the change in the percentage HIV rate
when the infected have a 5% probability of receiving ART in each period.

Table XIII shows that the benchmark is quite robust when the parameters are changed
by 1%. The HIV prevalence rate is always remarkably close to the 10.3% found in the
benchmark calibration. Moreover, the results from the two main policy experiments (male
circumcision and ART) are also very close to the changes found in the benchmark. Jux-

FIGURE 9.—Deaths by HIV/AIDS by age, fraction—model versus data.

44To be precise, the rows for the discount factors (βmax and βmin) report changes on the discount rates
ρ= (1 −β)/β.
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TABLE XIII

ROBUSTNESS—1%

HIV—Benchmark �HIV—Circumcision (50%) �HIV—ART (q = 5%)

Main calibration 10�3 −1�2 −0�8
p 10�3 −1�2 −0�7
u 10�2 −1�2 −1�1
l 10�1 −1�2 −1�0
βmax 10�3 −1�2 −0�8
βmin 10�4 −1�3 −0�8
ιchange 10�2 −1�2 −0�7
A 10�3 −1�2 −0�9
η 10�2 −1�2 −0�7
ωs 10�2 −1�2 −0�9
ωl 10�3 −1�2 −0�7
κ 10�3 −1�2 −0�8

tapose these numbers with the ones reported in Table XIV, in which each parameter is
changed by 10%. The percentage change now is considerably larger. Correspondingly, the
HIV prevalence rate now changes compared with the main calibration. This suggests that,
in order to fit the moments targeted in the calibration, the parameters should be close to
the ones found in the estimation. At the same time, the percentage changes in the policy
experiments are remarkably similar, even if individual parameters are changed by 10%.

APPENDIX G: COMPUTATIONAL DETAILS

A capsule summary of the numerical algorithm used to solve the benchmark model
is provided here. There are two key steps. The first step involves solving the model for
a given set of parameter values. In the second step, the algorithm picks the parameter
values to match the model’s output with the data targets as closely as possible. The first
step proceeds as follows:

1. The static problems (4) and (8) that yield the meeting probabilities are solved. The
solution to these problems implies that each π can be implicitly written as a nonlinear

TABLE XIV

ROBUSTNESS—10%

HIV—Benchmark �HIV—Circumcision (50%) �HIV—ART (q = 5%)

Main calibration 10�3 −1�2 −0�8
p 10�3 −1�2 −0�8
u 9�1 −1�5 0�0
l 8�8 −1�3 0�3
βmax 10�3 −1�2 −0�8
βmin 11�4 −1�5 −1�8
ιchange 9�0 −0�5 0�5
A 10�3 −1�2 −0�8
η 9�8 −1�1 −0�3
ωs 9�8 −1�3 −0�5
ωl 10�9 −1�3 −1�3
κ 10�1 −1�2 −0�7
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function of the difference between either two Ṽ ’s or a Ṽ and V . Given a grid of values for
the Ṽ ’s and V ’s, the π’s can be computed at each grid point using the bisection method.
The values for the π’s when the Ṽ ’s and V ’s lie off the grid can be obtained using an
interpolation scheme.

2. One outer loop solves for the market-clearing prices using the NEWUOA algorithm.
This algorithm picks the prices to minimize excess demand in the three relationship mar-
kets.

3. In an inner loop, the value functions and stationary distributions are determined
computationally, given prices, using standard iterative procedures. First, the “matched”
value functions (the Ṽ ’s) are computed for each type of individual. Then, the ex ante value
functions (the V ’s) are calculated using a linear interpolation scheme for the π’s that
employs the results from 1. The stationary distributions are computed using the formulas
in Appendices C.3 and C.4.
In the second step, the parameter values are calibrated using a Pattern Search algorithm.
The calibration algorithm and the solutions to the static problems in 1 are implemented
in MATLAB, while the more computationally demanding loops in 2 and 3 are coded in
FORTRAN.
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