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Abstract

This paper investigates the importance of the age composition in the
Covid-19 pandemic. We augment a standard SIR epidemiological model
with individual choices on work and non-work social distancing. Infected
individuals are initially uncertain unless they are tested. We find that older
individuals socially distance themselves substantially in equilibrium. An
optimal lockdown then confines the young more. The strictness and eco-
nomic costs of the optimal lockdown depend on whether or not individ-
uals can telework. Testing and quarantines save lives, even if conducted
just on the young. When some testing is available, the optimal lockdown is
much lighter and GDP rises even compared with a no-policy benchmark.
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1 Introduction

Many diseases affect different parts of the population differently. Some are
more prevalent for men, some for women, while others affect children more
than adults. Many infectious diseases, especially those caused by viruses, are
much more deadly for the elderly than the young—examples include influenza,
swine flu, SARS and most recently Covid-19.1 The strong age gradient in the
effects of these diseases is a first-order concern and thus raises a number of
important questions: How much voluntary protective behavior do different age
groups engage in? How does that interact with policy, e.g., should one target
lockdown or testing to particular subgroups? Would it be optimal to confine
the elderly to protect them while allowing more freedom to the young who are
contributing the most to GDP? While we explore these questions in the context
of the current Covid-19 pandemic, the main insights should carry over more
generally to future pandemics caused by other viruses.2

To answer these questions, we use a calibrated economic model of the pan-
demic that features age heterogeneity and individual choice, allowing agents to
choose rationally how much social distancing to undertake, taking into account
future infection risk and vaccine arrival. Social distancing provides protection,
but comes at the cost of forgone earnings and diminished leisure enjoyment.
These can only be partially substituted by teleworking and safe leisure activ-
ities. Initial symptoms leave individuals and the government with incomplete
information whether they have Covid, rendering testing valuable. The deadli-
ness of the disease, the need to earn a living and the natural death probability
differ between the working age population and the elderly.

We use the model to quantify the equilibrium interaction between age groups
and to explore to which extent age-specific policies are promising. We do this
by parametrizing our model to calibration targets taken from the Covid-19 pan-
demic in the US. Our calibrated model is consistent with data for the disease’s
basic reproduction number (R0), age-specific hospitalization and death rates.
The model also matches data on time at work, telework, leisure outside and

1Viral pneumonia is 10-fold more common among those aged 65+ than among those in
working age (Jain et al. 2015). This leads to a corresponding difference in the number of deaths
from seasonal influenza between these age groups. Reasons for this age-gradient include the
presence of existing lung diseases and other medical conditions, diminished pulmonary re-
serves, and a waning antigen response (Meyer 2001). This 10-fold increase between age groups
also characterizes the case fatality rates of respiratory virus pandemics such as the 2009 ”Swine
Flu” H1N1 (Wong et al. 2013), SARS (WHO 2003), and most recently Covid-19 (CDC 2020).

2The WHO (2021) reckons that the “next pandemic is most likely to be caused by influenza”,
which has a similar age gradient.
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time spent at home, all activities that influence infection.
The model predicts that older individuals shield themselves substantially

in equilibrium, especially at the peak of the pandemic. The young also re-
duce work and outside leisure, but much less so due to a lower risk of dy-
ing and the need to earn a living. Though the young can telework, this is a
lower-productivity activity. Relative to a purely epidemiological model where
individuals do not adjust their behavior, this behavioral change decreases the
overall death toll by 3/4 and cuts it by more than 80% for the elderly, at a GDP
reduction of 9%.

There are two types of externalities in our framework, yielding the need
for policy intervention. The first is the typical infectious disease externality:
people voluntarily socially distance only to protect themselves, not to protect
others. Thus, the equilibrium will feature too little distancing and too many
deaths compared to what is optimal. There is another more subtle dynamic
externality present in models with infectious diseases and no cure—also called
immunity externality (Garibaldi, Moen, and Pissarides 2020b). If there is no cure
or vaccine, then the epidemic will only stop once herd immunity is reached.
This largely determines the death count, and distancing becomes mostly about
the timing of infection.3 In the presence of young and old agents, it is better
to build herd immunity by infecting the young who have a lower chance of
dying (Gollier 2020b). Caution by the young can extend the duration of the
pandemic, making it more costly for the old to shield themselves and leading
to more deaths. But is such a dynamic externality quantitatively relevant? This
is not the case in our calibrated economy with vaccine arrival after a year and
a half. If a vaccine arrives very late, then the pandemic will end with herd im-
munity before vaccine arrival and the dynamic externality becomes relevant.
Specifically, we find that if a vaccine arrives only after 15 years, then more cau-
tion by the young leads to more deaths among the old. But for plausible vaccine
arrival times, we find that herd immunity-based strategies that encourage in-
fections by the young are not optimal.

We use the model to study the effects of a variety of policies and start with
lockdowns. An optimal lockdown with utilitarian welfare weights essentially
goes for a no-Covid strategy: the death toll declines 99%. This optimal policy
thus resembles the no-Covid strategy pursued by some countries (e.g., Aus-
tralia and New Zealand). The planner confines individuals enough early on to

3As Garibaldi, Moen, and Pissarides (2020b) show, total deaths also vary somewhat as dis-
tancing affects the number of still-susceptible people once herd immunity is reached.
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bring the disease to a halt. The lockdown is partially, but not fully, relaxed as
the vaccine arrival approaches. The economic costs are large: GDP is 8% lower
in the first year of the pandemic relative to the no-policy equilibrium (and 18%
lower than the no-disease scenario). The planner treats the two age groups dif-
ferently. It is optimal to confine the young more. The young are the ones with
little private reason to protect themselves. The old, in contrast, already pro-
tect themselves a lot because consequences for their own health are severe. In
a world with realistic vaccine arrival, a planner wants the young to distance
more to give the old some slack relative to the no-policy benchmark.

If teleworking was not possible, the optimal lockdown would be similar.
In fact, the shape of restrictions over time would be the same, but the planner
would impose higher costs when individuals go outside. Yet, people would
still end up engaging in more activity and the policy would be less effective.
Without telework, the optimal policy decreases deaths by only 80% at a much
larger GDP cost. These results show that even when teleworking is not possible
and economic costs are large, a long and relatively strict confinement is still
optimal, but that it no longer resembles a full no-Covid strategy.

Most countries, including the US, have not adopted a no-Covid strategy, and
instead implemented lockdowns of varying degrees and lengths. Are milder
lockdowns beneficial? Do they cut deaths by less but at lower GDP costs and
hence are not too far from the optimum in welfare terms? To answer such ques-
tions, we explore stylized lockdowns of different lengths and strictness. The
welfare benefits from milder lockdowns are much lower than those from the
optimal strict and long lockdown. Some lockdowns even lead to welfare losses
relative to the no-policy benchmark. For example, a short 4-week lockdown
has little effect on the overall health dynamics of the pandemic. Yet, if strict
enough, it can still cause a substantial economic downturn with welfare losses
for the young and hardly any benefit for the old. Longer lockdowns are more
successful in curtailing deaths. However, strict longer (26-week) lockdowns
decrease welfare for both groups, even with fewer deaths. This lower welfare
reflects large output and leisure costs relative to modest gains in survival.

A particular lockdown policy that has attracted attention in other research is
confining only the elderly. In fact, virtually all existing papers with young and
old agents argue for a policy that focuses confinement on the old (Acemoglu
et al. 2020; Alon et al. 2020b; Bairoliya and İmrohoroǧlu 2020; Favero, Ichino,
and Rustichini 2020; Gollier 2020b). The logic is that old individuals do not
work but have a high risk of dying, suggesting a large benefit and little cost of
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their confinement. While seemingly attractive, we find that optimal lockdowns
confine old people less. Confining only the elderly reduces the welfare of this
very group: the old. The reason for this result is intuitive: the elderly still
care about restrictions on their leisure time, and what is optimal behavior for
one elderly person remains optimal for all elderly together unless their joint
behavior affects aggregates such as the overall risk of infection. But if the group
is small, the latter effect is also small, and there is little room to improve upon
their own choices. Why are our results so different from what the previous
literature has argued? The reference point is critical. We compare our policies
to an equilibrium with voluntary social distancing, while much of the literature
uses the epidemiological equilibrium as reference point.4 This distinction is
crucial. Like in the previous literature, in our model confinement of the elderly
is preferred by all individuals to a purely epidemiological equilibrium where
the behavior is fixed as in normal times. But mandatory confinements on top
of voluntary social distancing are very costly and only beneficial if applied also
to the young. A similar result also arises in simpler calibrations (Brotherhood
et al. 2020b) and is confirmed in Boppart et al. (2020), a recent paper with a
similar setup to ours.

We also investigate testing and find it very beneficial if carried out in large
scale. Testing all individuals who are unsure of their Covid status would reduce
deaths by around 50% and lead to a substantial increase in GDP, even without
mandated quarantines. The reason is that individuals that are told they have
Covid have some partial altruism and reduce their social interactions in our
model. This frees up others to take more risk and increase their labor supply.
This requires a testing capacity of 4.7% of the population in a week, though. If
one additionally quarantines the infected, similar reductions in deaths can be
achieved by testing half as many people, requiring a test capacity of 2.3%. If one
could test everyone and apply quarantines, this would stop the outbreak on its
tracks, yielding hardly any deaths and GDP improvements of 10%, at a test-
ing capacity of 4.8%. The benefits of testing are virtually the same if one only
tests the young, as the old are few and careful and hardly affect the dynam-
ics of the disease.5 In fact, testing only the old slightly deteriorates the health

4Some recent papers in epidemiology embed reduced-form reaction functions to capture
adjustments in individual behavior (Manfredi and D’Onofrio 2013). In some economics papers,
like Alon et al. (2020b), individuals do make choices, e.g., over their sector of employment, but
these are very crude relative to the planner, who can determine the fine details of how much
individuals socially distance themselves.

5Obviously one might want to test the severely-ill old for Covid to identify them correctly
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outcomes. This happens because the old already take a lot of precautions. If
unsure whether or not they have the disease, they will continue to take such
precautions. However, if told they already caught it, they become fatalistic to a
degree that is not offset by partial altruism. While such fatalistic behavior has
been previously pointed out by Eichenbaum, Rebelo, and Trabandt (2020b), we
find that it is quantitatively relevant only for the old.

We then return to the question of optimal lockdown in a world where we
test 50% of those unsure. We find that the optimal lockdown still has a similar
shape, i.e., it is long and eases up only close to vaccine arrival. Yet, it is a lot
less strict. Recall that the optimal lockdown without testing implies a large
recession. With a strict quarantine of those that are tested positive, the planner
can relax the confinement of others. Especially the young can now spend about
ten additional hours outside each week and they respond by increasing their
labor supply. This substantially increases GDP. The old are also allowed more
time to enjoy leisure outside. The welfare of both groups sharply increase.

The next section reviews the pre- and post-Covid economic literature on
infectious diseases. It makes clear that there is little pre-Covid work on how to
calibrate epidemiological models with behavior. We draw on some experiences
from Greenwood et al. (2019, 2017, 2013) for the HIV/AIDS epidemic, but there
are clearly many differences and novel modelling choices in the current setting.
Section 3 outlines the model, followed by the benchmark calibration (Section 4),
baseline results (Section 5), lockdowns (Section 6), testing (Section 7), and other
policies (Section 8). Section 9 concludes.

2 Literature Review

This paper contributes to the literature that combines epidemiological models
(e.g., Kermack and McKendrick (1927)) with equilibrium behavioral choice. In
economics, efforts to incorporate behavioral responses to disease progression
through equilibrium models have mostly been theoretical. Such works have
long pointed out a negative externality of too little prevention efforts by self-
interested agents; see, e.g., Kremer (1996) for SI models, Quercioli and Smith
(2006) and Chen (2012) for SIR models, and more recently Toxvaerd (2019).
These studies consider homogeneous populations, though Kremer (1996) also
considers heterogeneous preferences for risky activities. In our setting, differ-

for treatment. We do not model this medical necessity.
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ences in activity are partially a consequence of different death rates.6

There are few quantitative economic models of disease transmission that
predate Covid. Greenwood et al. (2019) develop a heterogeneous-agent choice-
theoretic equilibrium model for the HIV/AIDS epidemic to analyze different
mitigation policies. Within this framework, Greenwood et al. (2017) explore
particular channels of selective mixing by relationship type, while Greenwood
et al. (2013) allow for incomplete information in infection status. In these works,
the behavioral response of agents is crucial for the results of different policies.
Chan, Hamilton, and Papageorge (2016) argue in a structural model that be-
havioral adjustments matter for the evaluation of medical innovations. Keppo
et al. (2020) use a calibrated homogeneous-agent model to argue that a substan-
tial behavioral elasticity is necessary to match different epidemics.

In the great influx of recent economics papers studying different aspects
of Covid-19, most consider homogeneous populations. Some analyze optimal
containment policies that trade off economic well-being of living individuals
versus lost lives (e.g., Alvarez, Argente, and Lippi (2020), Eichenbaum, Rebelo,
and Trabandt (2020a), Farboodi, Jarosch, and Shimer (2020), Garibaldi, Moen,
and Pissarides (2020a), McAdams (2020)). Other papers introduce uncertainty
about one’s infection status and the role for testing (Berger et al. (2020), von
Thadden (2020), Piguillem and Shi (2020)). Only Eichenbaum, Rebelo, and Tra-
bandt (2020b) combine testing with individual choices about social distancing
as in our paper. Unlike our setting, however, infected individuals display no
altruism and become more reckless if tested, which renders testing counter-
productive unless combined with quarantines.

Our paper differs from these in its focus on a key heterogeneity: different
ages and, hence, different risk groups. The are a few other studies that incorpo-
rate age differences: Favero, Ichino, and Rustichini (2020) and Gollier (2020a)
argue that re-opening should focus on the young while shielding the old, Gol-
lier (2020b) argues that herd immunity has less deaths when built on the young,
Glover et al. (2020) analyze how a blanket lockdown affects young and old
agents differently and how this leads to disagreement on optimal policy, Alon
et al. (2020b) argue that shielding the old while the young work is even more
important in developing countries, Acemoglu et al. (2020) characterize the op-
timal frontier between GDP and lives lost in a model with three age groups and

6Other work that considers heterogeneity includes Galeotti and Rogers (2012) who study
two identical populations but with non-random mixing, and work on transmission in networks
where individuals occupy different positions (Acemoglu, Malekian, and Ozdaglar 2016).
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argue that the tension between lives saved vs GDP lost can be best addressed
with targeted group-specific policies.7 Except for the latter, these papers do not
consider uncertainty about the infection status nor testing. They assume that
individual behavior can be finely adjusted directly through policy, but is oth-
erwise fixed (or has a coarse dimension such as which sector to work in), and
usually trade off lost production vs lives saved. This implies large benefits to
confinement of the elderly who are at risk but do not produce. Our work fo-
cuses on voluntary behavioral change which has been empirically found to be a
large driver behind social distancing (e.g., Maloney and Taskin (2020)) and how
this interacts with age-specific policies. In our model the old confine themselves
voluntarily and further mandatory confinement lowers their welfare.

3 Model

The general setup of our model is in discrete time. The economy is populated
by a continuum of ex-ante identical agents of two types: young y and old o,
so that age a ∈ {y, o}.8 Individuals work, enjoy leisure outside the home and
domestic hours. In the presence of the coronavirus, denote the agent’s status by
j. A susceptible agent is denoted by j = s. By spending time outside the house,
the agent may catch a disease, which may be Covid-19 or a common cold. Both
lead to mild ”fever” symptoms.9 These agents can be tested for coronavirus
with probability ξp(a), where the subscript denotes that this is a ”policy” choice
of the government. With complementary probability, they are not tested and are
therefore unsure about the source of their symptoms. Call this fever state j =

f . A tested individual knows for sure whether they are infected with Covid-
19. For simplicity, assume that non-tested infected individuals discover their

7Brotherhood et al. (2020a) extend our framework to study heterogeneity on income and
housing arrangements in developing countries (including slums). Spatial considerations for
the Covid pandemic are also explored in Bognanni et al. (2020). Fernández-Villaverde and
Jones (2020) study many countries and cities to analyze possible reopening scenarios.

8The model can easily accommodate any number of age groups, but we focus on just
two. Acemoglu et al. (2020) highlight large benefits from separately targeting the elderly and
the working-age population but little further improvements in sub-dividing those who work.
Moreover, we intentionally limit heterogeneity to age to provide a transparent picture, though
computationally other dimensions of heterogeneity could be handled.

9Ours is one of the few models in the literature that captures partial information—rather
than full knowledge or no knowledge about infection status. The specific modelling assump-
tion is for tractability, and evidently does not capture truly asymptomatic cases. Note, however,
that many cases that are classified as “asymptomatic” in the data do have light symptoms such
as headaches or a running nose. By including all these symptoms in our “fever” state, we can
capture the majority of “asymptomatic” cases.
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status after one period of uncertainty. If an agent knows they have Covid-19,
denote this by j = i. Conditional on being infected, they can develop more
serious symptoms that require treatment in a hospital, a status denoted by j =

h. This happens with probability α(a). An agent being treated in a hospital
can die with probability δt(a), on top of the natural death probability δ(a) in the
absence of the pandemic.10 The Covid death rate is time-dependent because the
death rate for individuals who obtain a bed in an intensive care unit (δ̃1(a)) is
lower than the death rate for those who do not (δ̃2(a)), and intensive care bed
shortages depend on the state of the pandemic. The agent can recover from
the disease with probability φ(j = h, a). If the agent recovers, they become
immune (or resistant) to future infections, a status denoted by j = r.11 Thus,
j ∈ {s, f, i, h, r}. Agents discount the future at a common factor β̃, but since
the natural survival probability ∆(a) = 1 − δ(a) is age-specific, their effective
discount factor is β(a) = β̃∆(a).

For production and leisure, each agent is endowed with one unit of time per
period. This can be divided into outside work hours n, teleworking hours v,
leisure outside the house ` and hours at home d (”domestic” leisure). The agent
time constraint is thus:

n+ v + `+ d = 1. (1)

Agents enjoy utility from consumption c, a composite leisure good when they
leave home g, and domestic hours d. The good g is produced using hours `
and buying ”intermediate” goods x according to g = g(x, `). We normalize the
utility after death to zero and capture the bliss from being alive through the
parameter b. The utility function is given by:

u(c, g, d, v; j, a, p) = ln c+ γ ln g + b+ λd ln d+ [λ(j) + λp(j, a)] ln(d+ v).

The term λ(j) expresses an additional preference for staying at home when be-
ing infected, and is a simple way of capturing altruism. We assume two levels:
λ(h) = λ(i) = λa and λ(r) = λ(s) = 0, so that individuals who transmit the virus
are altruistic and the others have no need for that. Individuals in the fever state
are unsure whether the are infected or not, and λ(f) is a weighted average of
these two levels, with weights equal to their belief of being infected with Covid.

10We do not add a birth process to the model as this is unlikely to be important over the
time-frame of the pandemic. The death rate is included to account for differences in effective
discount factors between the young and the old.

11While there is uncertainty regarding permanent immunity, immunity in the short run is
likely. As long as immunity lasts until a vaccine is available, all our results go through.
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We suppress the dependence on the belief to ease notation. λp(j, a) has a simi-
lar role, but from the point of view of the government.12 This captures simple
policies that confine everyone to staying at home (λp(j, a) = λ̄p), but can also
capture age-dependent confinements (λp(j, a) = λ̄p(a)), quarantines of those
who have tested positive (λp(i, a) = λ̄p, λp(j, a) = 0 for j 6= i) and more.

The wage per unit of time worked outside is denoted by w. The wage rate
for teleworking hours depends on the amount of telework the agent performs,
according to wτ(v), where τ(v) = τ0 − τ1v. The first few activities moved to
telework do not carry significant wage penalties. However, as more work is
moved to the home, it becomes more costly. This creates a clear trade-off with
teleworking: the more one works from home, the less likely it is to catch a
disease but the lower is the wage. Old agents receive a fixed retirement income
w̄. Total earnings can then be written as follows:

w(a, n, v) =

w[n+ τ(v)v] if a = y

w if a = o.

The budget constraint of the agent is thus given by:

c+ x = w(a, n, v). (2)

Infections happen to susceptible people (j = s) when they leave their house.
The longer they spend outside, the riskier it gets. Per unit of time outside the
house, the transmission risk Πt(a) is time-varying and depends on the number
of infected people and how much time these people spend outside, as discussed
later. So the probability of getting infected this period is

π(n+ `,Πt(a)) = (n+ `)Πt(a).

An agent might also catch a common cold, which happens with probability

π∗(n+ `) = (n+ `)Π∗.

The probability that the agent catches either disease is

πf (n+ `,Πt(a)) = π(n+ `,Πt(a)) + π∗(n+ `),

12Variables with an underscore “p” are policy instruments that can be used by the govern-
ment. With a slight abuse of notation, let pt denote the set of policies the government under-
takes at period t.
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which implicitly assumes that these are mutually exclusive events.13 If this hap-
pens and the agent is not tested (probability 1− ξp(a)), the agent is in the fever
state j = f for one period in which they cannot distinguish between the com-
mon cold and Covid-19. They assign probability Πt(a)/(Πt(a) + Π∗) to having
Covid-19. If they are tested (probability ξp(a)), they will know immediately
whether they are infected (j = i) or not (j = s). Otherwise they will learn at the
end of the period whether the fever was due to coronavirus or not.

Finally, assume that a vaccine comes along in period T ∗. With the vaccine,
nobody gets infected with Covid-19 anymore. That is, Πt(a) = 0, for t ≥ T ∗.14

The value function for susceptible agents is given by:

Vt(s, a) = max
c,x,n,v,`,d

u(c, g(x, `), d, v; s, a, pt)+ (3)

β(a)[1− πf (n+ `,Πt(a)) + π∗(n+ `,Πt(a))ξpt(a)]Vt+1(s, a)+

β(a)ξpt(a)π(n+ `,Πt(a))Vt+1(i, a)+

β(a)(1− ξpt(a))πf (n+ `,Πt(a))Vt+1(f, a)

s.t. (1) and (2).

The first line captures the utility from consumption and leisure. If the agent has
no fever or has fever but tested negative for Covid, they continue as a suscepti-
ble person, captured in the second line. The third line captures the continuation
for a feverish person who gets tested and had been infected, and the fourth line
corresponds to the fever state (fever symptoms and no test).

The value function for an agent who knows that they are infected with coro-
navirus but do not need hospitalization is given by:

Vt(i, a) = max
c,x,n,v,`,d

u(c, g(x, `), d, v; i, a, pt) + β(a)φ(0, a)Vt+1(r, a)+ (4)

β(a)(1− φ(0, a))α(a)Vt+1(h, a)+

β(a)(1− φ(0, a))(1− α(a))Vt+1(i, a)

s.t. (1) and (2).

The last term in the first line captures the case in which the agent recovers from
the disease and becomes resistant to the virus. The second line gives the value

13This is a good approximation when the probability of either event is sufficiently small, in
which the chance of getting both becomes negligible.

14An alternative modeling assumption is to suppose a stochastic arrival of a vaccine as in
Farboodi, Jarosch, and Shimer (2020).
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for the case in which the agent does not recover and requires hospitalization.
The third line is the case in which the agent does not recover and does not
require hospitalization and, thus, remains infected.

To define the value for an agent in the fever state, it is convenient to denote
by Ṽt(c, x, n, `, d; s, a) the terms in lines two to four on the right hand side of
(3), and by Ṽt(c, x, n, `, d; i, a) the corresponding terms in (4). They represent the
continuation values conditional on choices made this period, both for the sus-
ceptible and the infected. Those in the fever state simply get their current utility
and the weighted average of these continuation values, weighted by their belief
of being infected with Covid:

Vt(f, a) = max
c,x,n,v,`,d

u(c, g(x, `), d, v; f, a, pt) + (5)

Π∗ Ṽt(c, x, n, `, d; s, a)

Πt−1(a) + Π∗
+

Πt−1(a) Ṽt(c, x, n, `, d; i, a)

Πt−1(a) + Π∗

s.t. (1) and (2).

For individuals in hospital care, we set their flow utility equal to that of
death (i.e., to zero) to account for the harsh nature of the disease at this stage.
They can enjoy the utility of normal life again if they recover. These agents
provide no labor (n = v = 0) but we assign an exogenous level of ”outside”
time (` = ¯̀

h) to account for the infection burden that they impose onto their
carers. The value function for a hospitalized person is:

Vt(h, a) = β(a) [φ(1, a)Vt+1(r, a) + (1− φ(1, a))(1− δt(a))Vt+1(h, a)] (6)

s.t. (1) and (2).

This captures the case of recovery as well as the chance of remaining in the
hospital, and the continuation value after dying is set permanently to zero.

Finally, an agent who has already recovered and is resistant to the virus
enjoys utility:

Vt(r, a) = max
c,x,n,v,`,h

u(c, g(x, `), d, v; r, a, pt) + β(a)Vt+1(r, a) (7)

s.t. (1) and (2).

To define the laws of motion, denote the measure of agents of each type j of age
a in period t by Mt(j, a). LetMt be the set of these for all j and a. Further, let
nt(j, a) and `t(j, a) denote their times spent outside the house in equilibrium.

11



LetNt be the set of these equilibrium time allocations in period t for all j and a.
The law of motion is a mapping from the state vector and equilibrium actions
and the infection rates in period t into the number of agents of each typeMt+1

in the next period. Call this map T , so that

Mt+1 = T (Mt,Nt,Πt(o),Πt(y)). (8)

It simplifies the accounting to introduce two separate sub-states of the fever
state: j = fs for those with fever who are susceptible (called fever-susceptible)
and j = fi for those who are infected with Covid-19 (called fever-infected).
Agents do not know their sub-state, obviously, and therefore act identically in
both states. We continue to denote by state j = f all agents who have a fever,
which encompasses those in fi and fs.

As an example of the laws of motion for this economy, consider the number
of susceptible agents next period, which is given by

Mt+1(s, a) (9)

= Mt(s, a)∆(a) [1− πf (nt(s, a) + `t(s, a),Πt(a)) + π∗(nt(s, a) + `t(s, a),Πt(a))ξpt(a)]

+Mt(fs, a)∆(a) [1− πf (nt(f, a) + `t(f, a),Πt(a)) + π∗(nt(f, a) + `t(f, a),Πt(a))ξpt(a)]

where the second line captures all situations in which susceptible individuals
from last period remain alive and susceptible, as explained in connection to
value function (3). The third line resembles the second except that it uses the
time allocations of those in the fever state. It accounts for those who entered the
period fever-susceptible and continue to remain susceptible during this period.
The right hand side of (9) gives the map Ts for the susceptible agents. Appendix
A provides the analogous laws of motions Tj for agents in the other states j =

fs, fi, f, i, h, r, and for completeness also for Covid deaths and new infections.
The aggregate mapping T is then the vector of the Tj for all states j and ages a.

Aggregation: output, infectiousness, and deaths. Aggregate output in the econ-
omy in a given period is given by the time young individuals spend at outside
work or telework multiplied by the corresponding wage rate:

Qt =
∑
j

w[nt(j, y) + τ(vt(j, y))vt(j, y)]Mt(j, y). (10)

For many of the exercises we aggregate these weekly output measures to get
overall GDP measures for longer time periods (e.g., year).
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To calculate the aggregate probability of getting infected per fraction of the
period spent outside, observe that the number of infected people times their
average time spent outside the house times an exogenous susceptible-infected
transmission rate Π0 (which we assume to be age-independent in light of no
evidence to the contrary) yields a rate of infection of:

Π̂t = Π0

∑
ã,j∈{fi,i,h}

(nt(j, ã) + `t(j, ã))Mt(j, ã). (11)

This can be rationalized by assuming a unit amount of common space in which
agents are distributed uniformly, so that within each subunit of space an in-
dividual encounters the number of infected people represented by the sum in
(11), and each transmits the virus at the exogenous rate. Expression (11) then
corresponds to the probability of getting infected when this number is close
to zero, which happens if either the time-weighted number of infected people
or the exogenous transmission rate is low. A low number of infected people
happens in particular early in a pandemic. To match the basic reproductive
number (R0), calibrations tend to keep Π0 high, which can push (11) to exceed
unity once infection levels peak. This arises because (11) does not take into ac-
count the probability of getting infected multiple times within a period, which
is irrelevant if this rate is low, but becomes important at the peak. Shortening
the period length is counter-productive in our setting as this would also reduce
the length of uncertainty of fever individuals in our model.

Therefore we explicitly account for multiple infections within a period in
a way that keeps belief updating simple and keeps our infection probabilities
in line with other epidemiological models. Assume that the time outside the
house represents the probability of entering a common space where one can
get infected, and with the complementary probability the person is outside but
in a safe space, but the individual does not know which space they are in. If
in the common space, interpret (11) as a rate of encountering infections as in
continuous-time epidemiological models. Conditional on being in common
space, one can integrate to a (weekly) unit of time the probability of having
at least one encounter that leads to infection:

Πt(a) = 1− e−Π̂t(a). (12)

When Π̂t(a) is small, this reduces approximately to Πt(a) ≈ Π̂t(a). This is con-
structed under the standard random mixing assumption where everyone meets
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everyone else with equal probability.15

The probability that an agent in need of hospital care (j = h) dies of Covid-
19, δt(a), can vary over time. This may happen as the recovery probability de-
pends on the supply of hospital resources (e.g., ICU beds) versus the demand
for treatment (number of patients). Let Z denote the total number of hospital
beds and Mt(h) the total number of agents in need of hospital care in period t.
Recall that δ̃1(a) denotes the probability of dying if one is allocated a hospital
bed and δ̃2(a) if not. Assume hospital beds are allocated randomly to patients.
Hence, the probability of dying δt(a) is given by:

δt(a) = δ̃1(a) min

{
Z

Mt(h)
, 1

}
+ δ̃2(a) max

{
Mt(h)− Z
Mt(h)

, 0

}
. (13)

A rational-expectations equilibrium in this economy with initial number of
agentsM0(j, a) consists of a sequence of infection and death rates {Πt(a), δt(a)}∞t=0

and equilibrium time allocations {nt(j, a), vt(j, a), `t(j, a)}∞t=0 such that these time
allocations are part of the solutions to the individual optimization problems (3)
to (7), and the resulting law of motion (8) and their aggregation in (12) and (13)
indeed give rise to the sequence {Πt(a), δt(a)}∞t=0.

4 Calibration

This section describes how we discipline the parameters of the model. Let the
time period be one week. Regarding demographics, suppose the old people
(who do not work in the model) are those above 65 years old. According to the
US Census Bureau, this fraction is 0.214 of the adult population.

We start with the calibration of health-related parameters. These parameters
are summarized in Table 1, while Table 3 shows how the model fits the data tar-
gets. Start with the common cold. According to Heikkinen and Järvinen (2003),
the average American has between two and four colds every year. Suppose an
agent in our model has an average of three colds per year. This implies a weekly
infection rate of 0.058.16 In the model, this implies Π∗ = 0.113.

The parameter Π0 controls how infectious Covid-19 is. We pick Π0 in order
to match the basic reproduction number (R0) of Covid-19. R0 represents the

15While some (e.g., Mossong et al. (2008)) report that contact patterns are assortative with age,
others report more uniform contact patterns with considerable interactions across age groups
(Belot et al. 2020). In Section 8, we discuss interventions that separate parts of the outside
activities by age group, leading to selective mixing and age-specific infection risk.

16For details, see Appendix B.1
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average number of new infections that a random person who gets infected at
the start of the pandemic is expected to generate over the course of his disease.
In our model, this is closely related to Π0.17 We thus pick this parameter to gen-
erate an R0 of 2.5. This falls within the range of values that Atkeson (2020) uses
and close to the range Remuzzi and Remuzzi (2020) report. The corresponding
parameter value is then Π0 = 13.425.

Once the agent is infected with the coronavirus (j = i), there is a probability
of recovering from the disease (φ(0, a)), and if not recovered, a probability for
developing symptoms (α(a)). Set α(a) = 1 such that an infected agent spends
one week with mild symptoms and recovers (probability φ(0, a)) or develops
more serious symptoms (probability 1 − φ(0, a)). These numbers are close to
what the WHO reports.18 The parameter φ(0, a) then also controls the fraction
of agents that move to an ICU. CDC (2020) reports age-specific hospitalization
(including ICU) rates for Covid-19 patients. A fraction of 3.33% of patients aged
20-64 required being moved to an ICU, whereas this number was 9.1% for those
above 65 years. We thus set φ(0, y) = 0.967 and φ(0, o) = 0.909.

We treat hospitalized agents as those that are in an ICU. As discussed above,
we assume they cannot work and do not make any decisions. We assume a
flow utility level of 0, i.e. the same as death. These individuals still interact
with others (e.g., doctors and nurses) for a fraction ¯̀

h of their time. Butler et al.
(2018) estimate that patients in ICUs spend about 7.6 hours a day interacting
with other people. As these patients are under carefully controlled environ-
ments, we assume their infectiousness is half as much as others. Thus, set
¯̀
h = (7.6/24)/2 = 0.158.

Agents in need of hospitalization (j = h) may die (probability δ(a)) or
recover (φ(1, a)). Verity et al. (2020) report that patients with severe symp-
toms were discharged after an average of 24.7 days, or 3.52 weeks. This yields
φ(1, a) = 1/3.52 = 0.284. CDC (2020) also reports age-specific death rates condi-
tional on being hospitalized in the ICU: 14.2% for those aged 20-64 and 65% for
those above 65 years old. Given our time period of one week and the recovery
rate, this yields weekly death rates of δ(y) = 0.065 and δ(o) = 0.738.

For older agents, Arias and Xu (2019) report an annual survival rate for
individuals above 65 years old of 0.95. Thus, set the weekly survival rate for
old agents to ∆(o) = 0.951/52 = 0.999. For younger agents, set ∆(y) = 1.

We start the pandemic with a fraction of 0.01% of the population infected

17For details, see Appendix B.2.
18See the Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19).
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Table 1: Calibration – Disease Parameters

Parameter Value Interpretation
0.214 Fraction of old in Population

Π∗ 0.113 Weekly infectiousness of common cold/flu
Π0 13.425 Infectiousness of Covid-19
α 1 Prob(serious symptoms | no recovery from mild)

φ(0, y) 0.983 Prob of recovering from mild Covid-19, young
φ(0, o) 0.954 Prob of recovering from mild Covid-19, old
φ(1, y) 0.284 Prob of recovering from serious Covid-19, young
φ(1, o) 0.284 Prob of recovering from serious Covid-19, old

¯̀
h 0.158 Infections through the health care system

δ(y) 0.065 Weekly death rate (among critically ill), young
δ(o) 0.738 Weekly death rate (among critically ill), old
∆(y) 1 Weekly survival (natural causes), young
∆(o) 0.999 Weekly survival (natural causes), old
T ∗ 78 One and a half year (78 weeks) to vaccine arrival

Table 2: Calibration – Economic & Preference Parameters

Parameter Value Interpretation
ρ -1.72 Elasticity of subst. bw leisure time and goods
θ 0.033 Production of leisure goods
γ 0.635 Rel. utility weight - leisure goods
λd 1.562 Rel. utility weight - leisure at home
λa 1.068 Rel. utility weight - leisure at home (infected)
b 11.0 Flow value of being alive
β̃ 0.961/52 Discount factor
w 1 Wage per unit of time
τ0 1.055 Parameter related to telework productivity
τ1 0.960 Parameter related to telework productivity
w 0.214 Retirement income

in t = 1. Recall that a vaccine arrives after T ∗ periods. After this, nobody gets
infected with Covid-19 anymore. Set T ∗ = 78, such that a vaccine arrives after
one year and a half (78 weeks).19

Now turn to the preference and economic parameters, see Table 2 for a
summary. Let the leisure goods g be produced according to g(x, `) = [θxρ +

(1 − θ)lρ]1/ρ. The parameter ρ controls the elasticity of substitution between
leisure time outside the home and leisure goods. Following Kopecky (2011),

19Several vaccines have been developed by now and large scale vaccination programs are
underway. Yet, getting everyone vaccinated will likely take until the summer of 2021. Thus our
1.5 year assumption is quite plausible. We will also explore alternative scenarios later.
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set ρ = −1.72, which implies an elasticity of 0.368 so that goods x and leisure
time ` are complements. The parameters γ (utility weight of leisure goods g),
λd (utility weight of leisure time at home), τ0 and τ1 (which control the produc-
tivity of telework), and θ are jointly chosen to match five data targets. First,
we match a 40-hour work week (n = 40/112 = 0.357) in a world without the
pandemic. A fraction of 8% of these 40 hours (or 3.2 hours) are spent on tele-
work.20 Moreover, individuals spend 17.3 hours on non-working outside activ-
ities (` = 17.3/112 = .154).21 To calibrate the teleworking productivity parame-
ters, we use the following additional piece of information: when the pandemic
induces 36% of workers to telework, incomes decline by 10%.22 This yields
τ0 = 1.055 and τ1 = 0.96. We also match a fraction of income spent on x equal
to 12.5% (x/[w(n+ τ(v)v)] = .125).23 Set the discount factor to β̃ = 0.961/52.

The parameter λ(i) = λa denotes the increase in the marginal utility of stay-
ing at home for agents that know that they are infected with Covid. Govern-
ment advice is clearly to stay at home, and this parameter captures to which
extent time at home actually increases absent further legal enforcement. Epi-
demiologists have been interested in this during other epidemics such as swine
flu (H1N1). In their surveys, the overwhelming majority is willing to comply
voluntarily. Rizzo et al. (2013) is the only study that also reports actual ad-
herence, which averaged roughly 50% across Italy, Finland and Romania. We
therefore choose λa to match an increase in time spent at home by 50%.24

In the model, the parameter b represents the value of being alive over and
above the value of consumption. This influences how ‘’afraid” agents are of
dying. To discipline this parameter, we target a value of statistical life (VSL)
of 9.3 million dollars. This is the value used by the Environmental Protection

20Bick, Blandin, and Mertens (2020) report that around 8% of individuals were working from
home in February, 2020.

21This comprises the average hours per week spent on purchasing goods and services; car-
ing for and helping nonhousehold members; organizational, civic, and religious activities; so-
cializing and communicating; arts and entertainment (other than sports); sports, exercise and
recreation; and travel related to leisure and sports. The data comes from the American Time
Use Survey (ATUS). Note that, in our model, the old do not work. In our calibration, the old
spend 23 hours in leisure outside; i.e. more than the young. This is consistent with the data;
the old spend 19.5 hours in leisure outside. If we include the small reported time at work, this
number rises to 25.2 hours per week in the data.

22According to Bick, Blandin, and Mertens (2020) in May 2020, 35.2% of workers were work-
ing from home; similarly, Aum, Lee, and Shin (2020) report a 36% decline in in-loco work in the
same period. Further, US GDP declined by 10% in the 2020Q2.

23This comprises expenditures on food away from home, public transportation, medical ser-
vices and entertainment. The data comes from the Consumer Expenditure Survey (CEX).

24We analyze the case with no altruism (i.e. λa = 0) in Appendix C.1.
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Table 3: Moments – Model vs. Data

Moment Model Data (ranges)
Common colds per year 3 2-4
R0, Covid-19 2.5 1.6-4
% of infected in critical care, young 3.33 3.33
% of infected in critical care, old 9.10 9.10
% in critical care that dies, young 14.2 5-24
% in critical care that dies, old 65.0 40-73
Weeks in critical care, young 3.5 3-6
Weeks in critical care, old 3.5 3-6
Hours/day interacting while in ICU 3.8 7.6 (controlled)
Life expectancy (natural), young ∞ 79
Life expectancy (natural), old 20 20
% ↑ in time @ home - mild symptoms 50 50 (H1N1)
Value of statistical life (in million US$) 9.3 9.3
Hours of work per week 40 40
% of weekly hours in telework (normal times) 8 8
% ↓ in output w/ 36% of workers in telework 10 10
Hours of outside activities per week 17.3 17.3
% of income on goods outside 12.5 11.1-16.1
Replacement rate - social security, % 60 46-64

Agency (see Eichenbaum, Rebelo, and Trabandt (2020a)).25

Normalize the hourly wage to w = 1. According to Biggs and Spring-
stead (2008), the replacement rate for social security benefits for a median-
income household ranges between 46% and 64%. Set the replacement rate in
the model to 60%, a value towards the upper bound of the range since house-
holds may have savings outside the official social security income. This implies
w = .6w[n+ τ(v)v] = .6× .357 = .214.

For now, assume that Z = 1, such that there are enough ICU beds to treat
everyone. We will discuss the case with hospital bed constraints in Section 8.

5 Baseline Results

Our baseline is an economy with Covid-19 but no policy interventions. We be-
gin with a word of caution. Data on many relevant dimensions of the model
is still scarce and, even if they exist, wide ranges are reported. We know espe-

25To fit the VSL, we consider a young person in a no-Covid world, increase the quarterly
probability of death by 1/10,000 and compute b such that we need to give this person 930
dollars per quarter to be indifferent.
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Table 4: Non-Targeted Moments – Model vs. Data

Moment Model Data (ranges)
Infection fatality rate (IFR), % 0.89 0.5-8.5
Daily growth of infections, outset of Covid-19, % 14.4 15-50
Deaths, old/all, % 49 ≈80

cially little about the infection fatality rate because it is unclear what fraction
of the population is already infected. We thus did not use some important di-
mensions as calibration targets. Accordingly, all quantitative results should be
interpreted with caution. To give the reader a sense of what our model im-
plies along these important dimensions, we start by reporting moments from
our baseline model that were not targeted and compare to empirical estimates,
where available, see Table 4.

Most empirical estimates report the case fatality rate (CFR), i.e. the number
of deaths per confirmed Covid-19 case, which clearly differs from (and is lower
than) the infection fatality rate (IFR) if testing is imperfect. Estimates of CFR
vary considerably, ranging from 0.5 in Iceland, 3.5 in Italy and 8.5 in Mexico as
of January, 2021.26 We are somewhat on the low side here. However, as more
antibody surveys become available, it may turn out that many more people
were already infected than is currently believed, which would bring the case
fatality rate down.

Second, the daily growth rate at the outset of the pandemic in the model is
14.4%. In the data, these numbers vary greatly. Countries like Australia report
an initial daily growth rate of 15%; whereas the counterpart for Spain is around
30%. In countries like Italy and Norway, it reached 50%.27 Note that, though
our model generates a number in the lower range, in reality, the initial rise in
the data was probably partly due to a ramp-up in testing as well. Third, in
the benchmark 49% of all deaths are accounted for by those over 65. Some
empirical estimates find a higher number, as high as 80%.28

Table 5 reports our baseline results. Again, this concerns the economy with
Covid-19 but no policy intervention (Column Benchmark). It takes about 15
weeks for an unchecked pandemic to reach its peak in terms of seriously ill

26See the University of Oxford’s ourworldindata.org. A study from Ischgl finds an IFR as
low as 0.24 based on testing 79% of the population for antibodies. See The Telegraph, “High
coronavirus immunity found in ’super-spreader’ Austrian ski resort,” June 25, 2020.

27Again, see the University of Oxford’s ourworldindata.org website.
28See https://www.cdc.gov/nchs/nvss/vsrr/covid19/index.htm
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Table 5: Benchmark Results
Benchmark Epidem. Age ext. partial Age ext. general No disease

Wks to peak hospitalizations (yng) 15.00 12.00 15.00 17.00
Wks to peak hospitalizations (old) 11.00 12.00 11.00 12.00
Hospitalizations p/ 1,000 @ peak (yng) 0.76 12.81 0.17 0.12
Hospitalizations p/ 1,000 @ peak (old) 0.20 11.11 0.20 0.07
Dead p/ 1,000 1year (yng) 1.22 4.04 0.32 0.24
Dead p/ 1,000 1year (old) 4.03 31.40 4.03 1.62
Dead p/ 1,000 1year (all) 1.82 9.89 1.11 0.54
Dead p/ 1,000 LR (yng) 1.66 4.04 0.46 0.38
Dead p/ 1,000 LR (old) 5.79 31.40 5.79 2.47
Dead p/ 1,000 LR (all) 2.55 9.89 1.60 0.83
Immune in LR (yng), % 35.12 85.29 9.74 8.10
Immune in LR (old), % 8.67 45.81 8.67 3.71
Immune in LR (all), % 29.46 76.84 9.51 7.16
GDP at peak - rel to BM 1.00 1.13 0.73 0.97 1.14
GDP 1year - rel to BM 1.00 1.09 0.73 0.95 1.10
Cost p/ life saved, million $ – – 18.82 2.31
Hrs @ home (yng) - peak 76.29 57.97 104.50 79.27 57.97
Hrs @ home (old) - peak 104.44 88.99 104.44 94.75 88.99
Hrs @ home (yng) - 6m 74.66 57.97 103.63 79.07 57.97
Hrs @ home (old) - 6m 103.31 88.99 103.31 94.65 88.99

patients. Recall that a vaccine arrives after 78 weeks. As can be seen in Figure
1, at this time, the pandemic ends. The death count is substantial: 2.55 deaths
per 1,000 people. This number masks considerable age heterogeneity: the death
rate is 5.79 per 1,000 old individuals and 1.66 for the young.29 Most of these
deaths happen within the first year of the pandemic, related to the quickness
with which it reaches its peak. By the time the vaccine arrives, about 30% of the
population had been infected at some point and recovered.

We compare the benchmark results to an epidemiological version of the
model (Column Epidem. in Table 5), which assumes there is no change in be-
havior compared to a world without the disease (last column in Table 5).30 In
the benchmark people adjust their behavior substantially, i.e., the individual
risk of dying leads people to increase their time at home substantially (see left
panel in Figure 2). As the old do not work, they cut leisure outside substantially.
The young cut both time at work and leisure outside (again, see Figure 2). This
reduces the overall number of infected people in the long run by a little over 45
percentage points. The total death rate declines from 9.89 to 2.55 per 1,000 peo-
ple, but markedly more so among the old (see the middle lower panel in Figure

29Note that our (realistic) assumption that the old may also die from natural causes does play
a role here. Without this assumption, the old would be even more careful leading to a death
rate of only 3.5 per 1,000 instead.

30Recall that infected agents are partially altruistic. We explore the behavioral responses in a
world without altruism in Appendix C.1.
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Figure 1: Aggregate variables (Benchmark equilibrium)
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1). The timing of the disease does not change much, but the peak is much lower
(see Figure 1). The economic costs of this self-preservation is sizeable: GDP for
the first year of the pandemic is reduced by 10% relative to a no-disease world
(see Table 5 and Figure 1 for the time path of GDP). The no-pandemic scenario
has a GDP 14% higher than the baseline at the peak of the disease. In other
words, voluntary reductions in activity reduce GDP substantially.31

The young have more incentives to leave their house because of work. They
can then contribute more to the spread of the disease; and the burden will fall
more heavily on the old. This is a multi-group equivalent of the immunity ex-
ternality discussed in Garibaldi, Moen, and Pissarides (2020b). To get a sense of
the quantitative relevance of this dynamic externality, we run two counterfac-
tuals. Suppose the preferences of the young feature the same death and symp-
toms probabilities as those of the old (keeping the actual transition rates at their
true levels). That is, the young, who still need to work for their income, believe
they are subject to the same risks as the old. One counterfactual runs such sce-
nario in a partial equilibrium sense: we observe the difference in behavior of
the young assuming they cannot affect the aggregate infection rates. The other

31Using a similar mortality rate and a simple utilitarian welfare function, Hall, Jones, and
Klenow (2020) estimate people’s willingness to pay to avoid Covid-19 deaths to be 18% of
annual consumption.
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Figure 2: Choices of susceptible agents (Benchmark equilibrium)
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counterfactual performs the same thought experiment in general equilibrium.
In partial equilibrium (third column in Table 5), the young become substan-
tially more careful and considerably increase their hours at home. This lowers
the infections among this group and they consequently die in much lower num-
bers. In general equilibrium, this extra cautiousness of the young affect the old
in two ways. First, by being more careful, less infections take place. On the
other hand, if the young are more reckless and face more infections, they end
up contributing more to herd immunity and less of a burden falls on the old
(Gollier 2020b). In the experiment with our baseline calibration (second to last
column in Table 5), when the vaccine arrives for everyone after only 78 weeks,
the economy remains far from herd immunity. So, more careful young individ-
uals have a positive effect on the old and the death rate among the latter group
declines. However, if the vaccine takes a longer time to arrive, a smaller con-
tribution from the young increases the burden on the old. Suppose the vaccine
only arrives after 15 years (Table C2 in Appendix C.2). Then, as the young be-
come more cautious, deaths among the old rise. This effect only materializes at
long horizons, and is not present even with vaccine arrival after 10 years (re-
sults omitted), and so remains a theoretical possibility rather than a plausible
scenario.

6 Shelter-at-Home Policies

Throughout the pandemic, several governments around the world implemented
shelter-at-home policies; i.e. lockdowns. This section investigates the impact of
such policies on the dynamics of the disease and the economy. We start with
an analysis of the optimal policy and then move to analyze stylized policies of
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Table 6: Optimal Lockdown

Benchmark Optimal policy

Wks to peak hospitalizations (yng) 15.00 79.00
Wks to peak hospitalizations (old) 11.00 79.00
Hospitalizations p/ 1,000 @ peak (yng) 0.76 0.04
Hospitalizations p/ 1,000 @ peak (old) 0.20 0.03
Dead p/ 1,000 1year (yng) 1.22 0.00
Dead p/ 1,000 1year (old) 4.03 0.02
Dead p/ 1,000 1year (all) 1.82 0.01
Dead p/ 1,000 LR (yng) 1.66 0.01
Dead p/ 1,000 LR (old) 5.79 0.08
Dead p/ 1,000 LR (all) 2.55 0.03
Immune in LR (yng), % 35.12 0.30
Immune in LR (old), % 8.67 0.13
Immune in LR (all), % 29.46 0.26
GDP at peak - rel to BM 1.00 1.10
GDP 1year - rel to BM 1.00 0.92
Cost p/ life saved, million $ – 1.99
Hrs @ home (yng) - peak 76.29 63.76
Hrs @ home (old) - peak 104.44 92.59
Hrs @ home (yng) - 6m 74.66 80.39
Hrs @ home (old) - 6m 103.31 92.87
CEV rel. to BM (yng), % – 0.91
CEV rel. to BM (old), % – 6.47

different strictness and lengths.

6.1 Optimal Lockdowns

We start our discussion of lockdowns with optimal shelter-at-home policies.
In particular, we solve the problem of a utilitarian planner that maximizes the
weighted utility of the old and the young according to their population shares.
To do this, the planner chooses how strict the confinement must be. To oper-
ationalize such confinements, we assume the planner can choose λp(a) to al-
ter individual choices. Yet, when evaluating welfare, individual utility with
λp = 0 enters the planner’s problem. Utility thus captures the impact of dis-
torted choices, without counting the additional effect of the policy instrument
per se.

Table 6 reports the results for the optimal policy and compares it with the
benchmark. The optimal lockdown essentially goes for a no-Covid strategy.
That is, the confinement is strict enough that it essentially eradicates the disease
for most of the pandemic until the vaccine arrives. The death toll is 99% lower
compared with the no-policy benchmark. As Figure 3 shows, the measure of
infected individuals is essentially zero throughout most of the pandemic. Close
to the 18-month mark, it starts to increase. But, with the arrival of the vaccine,
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Figure 3: Aggregate variables in the optimal policy
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Figure 4: Optimal Lockdown
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the disease is soon over. Welfare (measured as consumption equivalent varia-
tion, CEV) increases substantially with this optimal policy for both groups, and
especially so for the old.32

How does the planner achieve such an outcome? Figure 4 provides answers.
Focus on the young first. In the optimal policy, the young spend less time out-
side compared with the no-policy benchmark. Part of the extra time at home
is spent in productive telework while part of it is devoted to leisure. With less
time outside, the young cut both leisure outside and the more productive time
at work outside.33 This reallocation of the time of the young causes GDP to
fall below the benchmark (Figure 3). In the first year, output is 8% lower. The
lockdown is stricter at the very beginning of the pandemic. With this strictness,
the planner can bring the disease under control right away. As the arrival of
the vaccine nears, the lockdown is relaxed and the young is allowed more time

32Appendix B.3 details how we compute welfare .
33Figure C1 in Appendix C.3 reports time allocation for all activites under optimal lockdown.
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outside.
The policy prescription for the old, however, is markedly different. The

planner allows the old to spend more time outside compared with the bench-
mark that features a more widespread disease (see Figure 4, right panel). Even
though the old do not work, they value leisure, which is taken into account by
the planner. This is in contrast with frameworks that only take into account the
output produced by the different age groups (as in Acemoglu et al. (2020) for
example). The planner places restrictions on the old, though, as otherwise they
would free-ride too much on the low infection risk. If the old were allowed
to choose without constraints, they would spend even more time outside (see
the partial equilibrium choices, represented by dots in the right panel of Figure
4). They do face less restrictions than the young, as shown in the left panel of
Figure 4. The old spend less time outside anyhow and are intrinsically more
responsive to the disease, which requires less planner intervention.

6.1.1 Optimal Lockdown without Teleworking

The results from the optimal lockdown discussed in the previous section im-
plied an aggressive strategy that virtually eradicated the disease. This drastic
outcome is achieved at a substantial economic cost. This cost, however, could
have been even larger if teleworking was not possible. With telework, individ-
uals can still produce at home under lockdown (even if at a lower productivity).
What would happen then if a planner had to choose the optimal lockdown in a
world without telework?

The overall paths of the optimal lockdown policies with and without tele-
work are similar. The young are required to spend much more time at home
compared with the benchmark than the old. Yet, the disease is no longer erad-
icated. The death toll declines 80% but still adds up to 0.74 deaths per 1,000
individuals. The economic costs are also much higher: output in the first year
of the pandemic is 33% lower than in the benchmark. Finally, as individuals
have a stronger desire to go outside since they cannot produce at home, the
planner must raise the utility costs of the confinement (higher λp) in order to
incentivize people to stay at home. See Appendix C.3 for the details.

6.2 Stylized Lockdowns

The optimal lockdown discussed in the previous section essentially amounts to
a no-Covid strategy in which the planner aims at eradicating the disease. Some
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countries seemed to have followed a similar approach (e.g., Australia and New
Zealand). However, several others did not. To study different strategies, we
now turn to lockdowns of various lengths and strictness.

Table 7 has the results for several constellations of the policy. To evaluate the
various policies, we always report the welfare gain relative to the benchmark.
The last two rows of the table report the welfare gain relative to the epidemi-
ological model. Since the epidemiological model ignores voluntary cautious
behavior, the welfare gains, especially for the old, of all policies are extremely
large. As we will see, once we evaluate policy relative to the equilibrium, policy
gains are much more nuanced.

Start with the mild and short (4-week) lockdown, in which λp is chosen such
that young agents would spend an extra 25% of time at home in the no-Covid
scenario (yielding λp = 0.3836). The effects on the statistics related to the disease
are small. The disease slows a bit with the peak being achieved two weeks later.
The death rate declines slightly. Given the mild requirement to stay at home
and the possibility to telework, GDP hardly changes. The lower death rate and
the small effects on output compound to marginally increase the welfare of both
groups.

The 4-week strict lockdown increases the shelter-at-home requirement to
90%, yielding λp = 32.3598. The strictness of the policy brings the pandemic
down to a point of delaying the peak of the disease by 9 weeks, even though
the policy only lasts for 4 weeks. The total death rate declines by 11.4%, with
a slightly bigger impact among the old (a fall of 12.1% within this group). Al-
though the policy is in place for a short period of time, its strictness adds to a
fall of 2% in yearly GDP, notwithstanding the possibility of telework. This fall
in income affects the young. As they are now poorer and face a tough shelter-
at-home requirement, their welfare declines. The old, on the other hand, expe-
rience a small rise in their welfare since their retirement income is guaranteed.
This type of disagreement may explain the controversies surrounding the im-
plementation of lockdowns.

Now consider longer policies that last for 26 weeks. The mild 26-week lock-
down decreases the total death rate by about 16%, with a higher decline among
the young. Though the policy is mild, its long duration leads to a fall in GDP
of 3% compared with the benchmark. As both groups experience better health
outcomes and the fall in income among the young is not too deep, the wel-
fare for both the young and the old rise. A strict 26-week lockdown has more
profound consequences. This policy can flatten and delay the infection curve
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Table 7: Policy Experiments: Shelter at Home

4-week lockdown 26-week lockdown 26-week, only old

Benchmark Mild Strict Mild Strict Mild Strict

Wks to peak hospitalizations (yng) 15.00 17.00 24.00 37.00 56.00 15.00 15.00
Wks to peak hospitalizations (old) 11.00 14.00 21.00 34.00 52.00 12.00 31.00
Hospitalizations p/ 1,000 @ peak (yng) 0.76 0.75 0.73 0.63 0.61 0.76 0.75
Hospitalizations p/ 1,000 @ peak (old) 0.20 0.19 0.19 0.17 0.17 0.19 0.17
Dead p/ 1,000 1year (yng) 1.22 1.16 0.99 0.80 0.09 1.22 1.21
Dead p/ 1,000 1year (old) 4.03 3.83 3.22 3.01 0.42 3.92 2.30
Dead p/ 1,000 1year (all) 1.82 1.73 1.46 1.27 0.16 1.79 1.44
Dead p/ 1,000 LR (yng) 1.66 1.62 1.49 1.36 0.83 1.66 1.66
Dead p/ 1,000 LR (old) 5.79 5.62 5.09 4.95 2.65 5.68 4.12
Dead p/ 1,000 LR (all) 2.55 2.48 2.26 2.13 1.22 2.52 2.18
Immune in LR (yng), % 35.12 34.22 31.53 28.68 17.46 35.10 34.96
Immune in LR (old), % 8.67 8.43 7.66 7.46 4.06 8.51 6.23
Immune in LR (all), % 29.46 28.70 26.42 24.14 14.59 29.41 28.81
GDP at peak - rel to BM 1.00 1.00 1.00 1.01 1.00 1.00 1.00
GDP 1year - rel to BM 1.00 1.00 0.98 0.97 0.88 1.00 1.00
Cost p/ life saved, million $ – 3.51 3.19 3.40 4.50 -0.15 -0.09
Hrs @ home (yng) - peak 76.29 76.22 76.30 75.79 76.80 76.26 75.95
Hrs @ home (old) - peak 104.44 104.38 104.26 103.72 103.64 104.78 110.37
Hrs @ home (yng) - 6m 74.66 75.01 76.00 77.63 110.13 74.63 74.33
Hrs @ home (old) - 6m 103.31 103.47 103.91 99.52 110.10 103.74 110.32
CEV rel. to BM (yng), % – 0.02 -0.23 0.16 -1.66 0.00 0.01
CEV rel. to BM (old), % – 0.19 0.09 1.04 -0.83 -0.00 -2.44
CEV rel. to epidem. (yng), % 1.67 1.70 1.44 1.84 -0.02 1.68 1.68
CEV rel. to epidem. (old), % 20.11 20.34 20.22 21.39 19.09 20.10 17.10

Note: A mild lockdown is given by the λp that makes young individuals spend an extra 25% of
time at home in the no-Covid scenario, while a strict lockdown raises this requirement to 90%.

(see Figure 5). This delay and the arrival of a vaccine after 78 weeks combine
to decrease the death toll by more than 50%. This result comes at a substan-
tial economic cost as GDP declines by 12% in the first year of the pandemic.
The time path of output actually exhibits two downturns. The first downturn
is caused by the lockdown. The second downturn is due to the endogenous
response of individuals. As the disease starts to spread, people cut their time
outside and this cut includes a decrease in the young’s time at the more produc-
tive outside work (see Figure 6). In the end, though the young experience better
health outcomes, this decline in their income reduces their welfare. The retire-
ment income of the old does not change with the lockdown and they also face
lower death rates. However, the strict lockdown reduces their leisure outside
so much that the policy leads to a decline in their welfare as well.

Some of the policies discussed so far are able to decrease fatalities in the pan-
demic. However, this outcome comes with large drops in GDP. To avoid these
large economic costs, one possibility is to implement group-specific policies.
The old can be confined since they are the more at-risk group while the produc-
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Figure 5: Aggregate variables (Shelter in place, strict, 26 weeks)
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Figure 6: Choices of healthy agents (Shelter in place, strict, 26 weeks)
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tive young are allowed to work in order to contain the economic damages. This
type of age-specific policy has been suggested both in public discourse and in
academic works; e.g., Acemoglu et al. (2020), Alon et al. (2020b), Bairoliya and
İmrohoroǧlu (2020), Favero, Ichino, and Rustichini (2020), and Gollier (2020a).

The last two columns in Table 7 report the results for two 26-week lock-
downs (one mild and one strict) that only confine the old. A first observation
is that the health of the young is hardly affected by these lockdowns: the death
toll and the fraction of immune within this group are virtually the same as in
the benchmark. Since the old comprise a relatively small group and they al-
ready take significant precautions in the benchmark, the extra time they spend
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at home during the lockdown does not alter the situation much for the young.34

Second, as the young are not confined, they are free to work outside. As a con-
sequence, GDP is essentially the same as in the no-policy baseline. The effects
on the old are more pronounced. Take the strict policy (last column in Table 7).
The death rate in this scenario is almost 30% lower among the old compared
with the benchmark. The decline is larger than 40% in the first year. Moreover,
as the old are retired, their income is not affected by the lockdown. However,
the welfare of the old falls substantially—by 2.4% in consumption equivalent
units. This happens since the old are required to stay home for longer than
they would have chosen to.35 The reference point for welfare comparisons is
crucial. Most papers in the literature compare the welfare of the old under the
policy with the epidemiological world with no behavioral adjustments (what
we do in the last two lines in Table 7). This comparison suggests that the old
would prefer to be confined. However, with endogenous behavioral change
in equilibrium, the old socially distance a lot. Since the old are a small group,
especially when weighted by their low activity levels, they do not induce large
equilibrium effects, and so their individually optimal behavior is close to the
collectively optimal behavior of the old as a group. Therefore, substantial fur-
ther mandatory lockdowns of just this group decrease the welfare of precisely
the group it is intended to protect.

All shelter-at-home policies discussed so far were implemented at the very
start of the outbreak. What happens if such a policy is implemented only af-
ter the disease is developing? Consider a strict lockdown that only starts 8
weeks after the outbreak and lasts for 26 weeks. The results are in Figure C3
in Appendix C.4. As the disease develops in the first 8 weeks, a wave of in-
fections develops. With this policy, infections decline substantially. When the
policy is lifted after 26 weeks, a second wave appears. GDP declines at the out-
break due to individuals’ endogenous social distancing. It falls further due to
the lockdown and it recovers when the policy is lifted. When the second wave
develops, the endogenous behavior of agents again leads to a decline in output.

In sum, shelter-at-home policies can decrease the death toll of the pandemic
if they last long enough until close to the arrival of a vaccine. Stricter lockdown

34The elderly are a small group precisely because they are so careful: they are 21.4% of pop-
ulation, but only 10.39% of steady-state interaction because they do not need to work, and only
5.45% of social interactions at the peak of the pandemic because of their additional precautions.

35Belot et al. (2020) find that individuals 65 or older experience worse negative non-financial
effects from lockdowns. Andersson et al. (2020) report that the old in Sweden are willing to pay
more to avoid confinement.
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policies are particularly powerful to curb deaths, but they cause substantial eco-
nomic costs. A utilitarian planner, according to our calibration, would attempt
to follow a no-Covid strategy and aim for the virtual eradication of the disease
if individuals are able to telework. In this optimal policy, the planner would do
so by confining the young more than the old since the old have fewer contacts
anyhow and are intrinsically more responsive to the pandemic.

7 Testing

Health authorities around the world emphasize the importance of testing. Ac-
cordingly, many countries invested heavily to ramp up their testing capacities
since the start of the pandemic. But what exactly is the benefit of testing? Does
it work by itself or only in combination with quarantines? In the limit, if every-
one was tested every day and, if found Covid-19 positive, immediately quar-
antined, the pandemic would stop almost immediately. Yet, such a policy is
clearly not very realistic. So what is the benefit of partial testing? What about
imperfect quarantines? This section considers various combinations of testing
and quarantining policies to assess their effect on deaths and GDP.

We start with policies that only test individuals without further quarantines.
In our baseline calibration, upon infection with the coronavirus, individuals
remain one week in the ”fever” state, unsure whether they have Covid-19 or
a common cold. By testing them, this uncertainty disappears earlier. Since the
agents are partially altruistic, they are more cautious about leaving their homes.

Table 8 provides the results of testing all individuals (column Testing all),
only the young (Testing young) or only the old (Testing old). Start with the uni-
versal policy. Figure 7 shows that, with universal testing, the mass of infected
agents that are unsure whether they have the disease (Mfi) goes to zero. In-
stead, agents now know they are infected (Mi) and thus act according to their
partial altruism. This leads the disease to develop at a slower pace; i.e. flatten-
ing the curve. The peak now takes about three months longer to arrive and is
less pronounced (see Figure 7). This translates into fewer deaths for both age
groups. Fewer people catch the disease overall as can be seen from the lower
immunity rates in the long run. Note that this universal testing policy is a mas-
sive undertaking: in the week with the maximum number of tests performed,
about 4.7% of the population is tested. In the US, this implies about 15 million
tests in a single week. This is accompanied by a 5% rise in GDP compared with
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Table 8: Policy Experiments: Testing

Testing and quarantine

Benchmark Testing all Testing young Testing old 50% 100% 100% testing
testing testing only young

Wks to peak hospitalizations (yng) 15.00 28.00 27.00 15.00 25.00 3.00 3.00
Wks to peak hospitalizations (old) 11.00 25.00 25.00 11.00 22.00 3.00 3.00
Hospitalizations p/ 1,000 @ peak (yng) 0.76 0.36 0.35 0.77 0.26 0.01 0.01
Hospitalizations p/ 1,000 @ peak (old) 0.20 0.12 0.12 0.20 0.09 0.01 0.01
Dead p/ 1,000 1year (yng) 1.22 0.58 0.57 1.23 0.46 0.00 0.00
Dead p/ 1,000 1year (old) 4.03 2.33 2.32 4.06 1.97 0.01 0.01
Dead p/ 1,000 1year (all) 1.82 0.95 0.94 1.83 0.78 0.00 0.01
Dead p/ 1,000 LR (yng) 1.66 0.84 0.84 1.68 0.69 0.00 0.00
Dead p/ 1,000 LR (old) 5.79 3.40 3.39 5.82 2.94 0.01 0.01
Dead p/ 1,000 LR (all) 2.55 1.39 1.38 2.57 1.17 0.00 0.01
Immune in LR (yng), % 35.12 17.77 17.64 35.42 14.64 0.05 0.06
Immune in LR (old), % 8.67 5.11 5.09 8.72 4.42 0.02 0.02
Immune in LR (all), % 29.46 15.06 14.95 29.71 12.45 0.04 0.05
Max. n. of tests in a week, % 0.00 4.72 4.24 0.48 2.36 4.76 4.27
GDP at peak - rel to BM 1.00 1.07 1.08 1.00 1.09 1.14 1.14
GDP 1year - rel to BM 1.00 1.05 1.05 1.00 1.06 1.10 1.10
Cost p/ life saved, million $ – -2.47 -2.47 – -2.40 -2.14 -2.14
GDP gain per test, 1 year, $ – 1431.03 1575.79 – 3286.91 2282.61 2540.06
Hrs @ home (yng) - peak 76.29 67.58 67.32 76.53 64.82 58.72 58.72
Hrs @ home (old) - peak 104.44 99.18 99.00 104.53 96.99 90.09 90.08
Hrs @ home (yng) - 6m 74.66 67.61 67.31 74.86 64.76 57.97 57.97
Hrs @ home (old) - 6m 103.31 99.17 98.96 103.40 96.90 88.99 88.99
CEV rel. to BM (yng), % – 0.76 0.77 -0.01 0.88 1.43 1.43
CEV rel. to BM (old), % – 3.33 3.35 -0.06 3.89 6.66 6.66

Note: the quarantine intensity is given by the λp(i, a) that makes young individuals spend an
extra 90% of time at home in the no-Covid scenario (λp(i, a) = 32.3598).

the benchmark without testing due to a milder pandemic. In the end of the first
year, this translates to about 1,431 dollars in extra GDP per test performed.

Table 8 also reports age-specific testing policies. First, testing exclusively
the old causes only minor changes to the development of the disease. Since
this group comprises a minority of the population and they protect themselves
more, their behavioral change is not strong enough to generate considerable
changes in the economy. In fact, a slightly negative effect materializes. As the
old get tested and are found positive, they decrease the substantial prevention
effort they engage in during the no-policy benchmark. That is, they become
fatalistic and undertake more activities, a result reminiscent of Eichenbaum,
Rebelo, and Trabandt (2020b). This has a small detrimental effect on others,
both via a higher death toll and lower welfare. Testing the young has the op-
posite effect. As this group consists of 80% of the population and they protect
themselves less, the results are quite similar to those obtained with a universal
policy.

While testing works quite well, and testing with quarantines even better (as
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Figure 7: Aggregate variables (Testing all)
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we will see below), implementing this policy faces some hurdles.36 First, in the
model we test a fraction of those with fever. In reality, one needs to know who
to test. One possibility is to focus on contact tracing. A second issue is that our
model assumes instantaneous test results, while in reality this is not the case.
However, rapid tests that deliver results within an hour exist by now. Finally,
unlike in our model, in reality testing involves costs. Scaling up the current test
methods to the quantities needed is not easy. Even if scaling up testing comes
at a substantial cost, these costs are likely worth paying, especially since our
analysis has shown that there are substantial gains in GDP per test performed,
which are more than enough to cover the costs.

7.1 Test and Quarantine

The previous section discussed the impact of testing policies that rely on indi-
vidual’s altruism to curb the spread of the disease. On top of testing people,
one could quarantine those that tested positive (which most countries try to
do). The last three columns of Table 8 report results of three such experiments.

Consider a policy where 100% of those with a fever are tested, and those that
test positive are forced to quarantine through an increase in λp(i, a) that makes

36See The Economist, April 25, 2020 “Test of Reason” for difficulties of scaling up testing.
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Figure 8: Aggregate variables (Test and Quarantine, 50%)
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young individuals spend an extra 90% of time at home in the no-Covid scenario
(λp(i, a) = 32.3598). This policy leads the young to spend 92% of their time at
home (the old even more). So while it is a relatively strict quarantine, it is not
100%. This captures the fact that enforcement of quarantines is never perfect in
reality. It can be thought of as people still escaping from their quarantine 8% of
the time (about 8h/week), or that 8% of agents are not complying at all. This
policy is extremely effective. In the long run, less than a tenth of one percent
of the population catches the disease and are thus immune. The death count
is almost zero. With the lower burden of the disease, GDP goes up by 10% in
the first year of the pandemic. Given that the number of immune individuals
is low in the long run, this may be a drawback of this policy: in the event of a
new outbreak, the economy would be far from the herd immunity level.

Consider a test-and-quarantine policy that focuses on the young only (last
column in Table 8). Since the young comprise the lion’s share of the popu-
lation and spend more time outside, testing this group only is essentially as
effective as testing the entire population. In fact, if one factors in that tests cost
some money, then this is the better policy since fewer people are tested, which
increases the GDP gain per test to more than $2,500. Alternatively, a testing
policy that applied to the old only (not shown) would not be as useful.

In our model, we assume immediate test results. This is not true in reality, as
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the results usually take a few days. Focus then on a test-and-quarantine policy
that targets 50% of the population (see Table 8). Alternatively, this could be
thought of as testing with results delayed to the middle of the week of infection.
With only half of those with a fever being tested, some agents will move from
the unsure ”fever” state (Mfi) to the infected state (Mi), but not all. See Figure 8.
Compared with the benchmark, the peak occurs at a later date and is lower; i.e.
the curve is flattened (see Figure 8). There will thus be a much lower fraction of
hospitalized individuals (Mh) at the peak. Relative to the baseline, the number
of deaths declines by more than 50% to 1.17 per 1,000 people. This decline is
steeper among younger individuals (a drop of about 58% for this group). The
total number of Covid-19 cases in the long run falls from almost 30% of the
population in the benchmark to around 12%. GDP goes up in the first year by
about 6% relative to the baseline. This represents around 3,286 extra dollars in
GDP per test carried out.

Even though around one eighth of the population catches Covid-19 with
a 50% test-and-quarantine policy, agents change their behavior and engage in
more risk. At the peak of the disease, the young spend about 11 hours per week
longer outside the home compared to the benchmark. Older individuals, who
are more affected by the disease, also spend less time at home: seven fewer
hours per week relative to the baseline. This risk compensation acts to dampen
the effect of the policy.37

Policies that involve quarantines require infected agents to stay longer at
home, even if this is against their best interest. However, this can be a welfare-
improving policy. The last two rows of Table 8 report the welfare gains for a
susceptible person at the outset of the disease, for the young and the old. The
welfare for both young and old agents is higher with the quarantine policies
in place though they know they might be required to quarantine themselves if
they catch the disease.

In sum, testing turns out to be an extremely effective policy, especially when
combined with quarantines. The gains in GDP seem much higher than what
is needed to cover the costs of the policy. Testing also has non-linear effects:
testing half of the exposed population and isolating the positive cases decreases
deaths by more than 50%. Finally, age matters for testing as well. Testing the
young only (the larger group) decreases the number of tests needed and leads
to similar outcomes as a universal testing policy.

37See Greenwood et al. (2019) for a discussion of the quantitative impact of risk-compensation
effects on policies that aim to curb the HIV/AIDS epidemic.
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Figure 9: Optimal policy with testing and quarantines
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7.2 Optimal Lockdown with Test and Quarantine

We now return to the question of what level of confinement a utilitarian planner
would choose. Now, however, we ask this question in the presence of testing
and quarantines. In particular, suppose testing is available for 50% of those
with fever and, if tested positive, the individual is quarantined through an in-
crease in λp(i, a) that would make young individuals spend an extra 90% of
time at home in the no-Covid scenario. Table C4 in Appendix C.5 presents the
details for this exercise.

With this extra instrument, like before, the planner aims for a virtual no-
Covid strategy and there are very few deaths throughout the pandemic, only
0.02 per 1,000 people. Despite the similar health outcomes between the optimal
policy with and without testing and quarantines, the policy, behavior and eco-
nomic effects are markedly different. With the possibility of quarantining those
that are found to be positive, the planner can relax the confinement among the
others. The left panel of Figure 9 shows that the policy parameter λp is lower for
both groups when testing and quarantines are in place. The right panel of Fig-
ure 9 shows that this lighter lockdown leads the old and especially the young
to spend more time outside compared with the optimal lockdown without test-
ing. With the young being able to spend more time outside and work, GDP is
actually 2% higher than in the no-policy baseline and 10% higher than in the
optimal policy without testing and quarantines.
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8 Other Scenarios

This section contains the results for different scenarios and policy experiments.
In particular, we assess the effects of selective mixing (Section 8.1), hospital bed
constraints (Section 8.2) and an alternative calibration based on Ferguson et al.
(2020) (Section 8.3).

8.1 Selective Mixing

Consider a government that reserves some common spaces for a particular age
group only. This could entail that certain hours in supermarkets are reserved for
a particular age group, or that some parks or leisure centers are separated in the
same manner. This leads to selective mixing where agents are more likely to meet
those of their own type. Suppose a fraction ζ of people’s time outside can be
separated into the different age groups and a fraction ϑa of the common space
is allocated for age group a. Conditional on being outside, some infections now
occur only within groups. To generate quantitative results, we use time use
surveys to identify which activities could potentially be separated across the
age groups and set ζ = 0.42 accordingly. Moreover, assume the common space
is divided (ϑa) according to the relative sizes of each group. The details are
provided in Appendix C.6.

With this selective mixing, the overall death rate falls, both within the first
year of the pandemic as well as in the long run, where deaths fall by about 5.5%.
This result masks an important heterogeneity across the two groups though: the
death rate for the old is reduced by almost 20%, while the young die about 8%
more compared with the benchmark. With partially separated spaces, the old
interact more among themselves, a group that naturally protects itself more.
The opposite happens to the young. Life is now riskier for this group and they
behave accordingly. At the peak of the disease, the young spend more time
at home compared with the benchmark. The overall effects on the young are
small and their output hardly changes, keeping the GDP in the first year of the
pandemic only 1% lower than in the no-policy baseline.

8.2 Hospital Bed Constraints

We now explore the effects of scarce hospital resources. The American Hos-
pital Association reports the existence of 84,555 intensive care beds excluding
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neonatal units, implying a per-capita number of Z = 0.032607% ICUs.38 We
set δ̃2(a) = 1, so that the death for an agent in need of hospitalization that is
not given a bed is certain to occur. The results are provided in Appendix C.7.
Without behavioral changes (the epidemiological scenario), deaths would more
than double. However, agents internalize this effect and change their behavior.
At the peak of the disease, the young spend an extra hour at home per week.
In the end, the overall death toll is similar to our baseline results as total deaths
increase by less than 1%.

8.3 Alternative calibration based on Ferguson et al. (2020)

An influential study was conducted by researchers at the Imperial College Lon-
don: Ferguson et al. (2020). Their results have been used to calibrate recent
models in the economics literature. We recalibrate the disease parameters in
our model to reflect those provided by this study. The main differences relative
to those from CDC (2020) is that the the young (the old) are less (more) likely to
end up in an ICU. On the other hand, the young (the old) are more (less) likely
to die, conditional on being in an ICU. The results are qualitatively similar to
those obtained with our benchmark calibration; see Appendix C.8. The total
death rate is about 20% lower and this is completely explained by fewer deaths
among the young; the old end up dying more.

9 Conclusions

This paper provides a framework to study the link between age heterogene-
ity, incomplete information/testing of the disease status, and the behavioral
adjustments that individuals make to protect themselves during the Covid-19
pandemic. These seem to be first order in the spread of the infections and the
deadliness of the disease. We embed these elements in an otherwise standard
SIR model of disease transmission, calibrate it, and study policy interventions,
both in general and targeted to particular age groups.

Especially the old protect themselves during the crisis, which is beneficial
because they have a higher chance of dying. An optimal lockdown that weighs
the different age groups according to their population shares essentially aims
at a no-Covid strategy. It does so by specifically confining the young who con-
tribute more to encounters and infections as they are less intrinsically motivated

38See https://www.aha.org/statistics/fast-facts-us-hospitals
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to protect themselves. For this strategy to work, the possibility of telework is
key. Testing and quarantine are excellent ways of reducing the disease if fea-
sible, even if just concentrated on the young. When testing is available, this
contributes to relaxing the strictness of the optimal lockdown, and has a posi-
tive effect on GDP.

The model is richer than many existing counterparts, but remains suffi-
ciently tractable to build upon in future work. We explore policies that impose
selective mixing but future work could consider individuals who endogenously
choose to interact with different groups. The economic costs of lockdowns in
the form of closed schools have been particularly large for children, so adding
a third age group would be a promising avenue to pursue. Our setup could
be used to study other dimensions of heterogeneity such as education, sectors,
and gender.39 Another form of heterogeneity may be in the beliefs about the
severity of Covid-19. If some people have wrong beliefs about the risk of dy-
ing, they have a lower incentive to protect themselves (see Greenwood et al.
(2019) for an analysis along these lines in the context of HIV). The existence of
such a group of people will have implications for optimal policy. Moreover, the
framework can be applied to other pandemics with similar age gradient, such
as past and future influenza pandemics. These extensions are part of a broader
set of topics that warrant attention in future research.

References

Acemoglu, Daron, Victor Chernozhukov, Ivan Werning, and Michael D. Whin-
ston. 2020, May. “A multi-risk SIR model with optimally targeted lock-
down.” Working paper 27102, National Bureau of Economic Research.

Acemoglu, Daron, Azarakhsh Malekian, and Asu Ozdaglar. 2016. “Network
security and contagion.” Journal of Economic Theory 166:536 – 585.

Adams-Prassl, Abi, Teodora Boneva, Marta Golin, and Christopher Rauh.
2020. “Work That Can Be Done from Home: Evidence on Variation within
and across Occupations and Industries.” IZA Discussion Paper No. 13374.

Alon, Titan, Matthias Doepke, Jane Olmstead-Rumsey, and Michèle Tertilt.
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Online Appendix - Not for Publication

A Laws of Motion

In the main text, equation (8) describes the overall laws of motion, and (9) de-
scribes the sub-part that determines the transitions for susceptible agents. The
following contains the transitions for all other types. It also includes the ac-
counting of Covid-deaths and new infections.

The number of fever-susceptible agents who have a fever and are not tested
but are truly Covid-negative and susceptible is given by

Mt+1(fs, a) (14)

= Mt(s, a)∆(a)(1− ξpt(a))πf (nt(s, a) + `t(s, a),Πt(a))
Π∗

Πt(a) + Π∗

+Mt(fs, a)∆(a)(1− ξpt(a))πf (nt(f, a) + `t(f, a),Πt(a))
Π∗

Πt(a) + Π∗
.

It includes in the first line susceptible people from last period who got fever but
were not tested, and are truly Covid-negative and susceptible. The second line
again accounts for those in the fever-susceptible state, as they can again catch
another fever while truly remaining susceptible.

A similar logic applies to those in the fever-infected state:

Mt+1(fi, a) (15)

= Mt(s, a)∆(a)(1− ξpt(a))πf (nt(s, a) + `t(s, a),Πt(a))
Πt(a)

Πt(a) + Π∗

+Mt(fs, a)∆(a)(1− ξpt(a))πf (nt(f, a) + `t(f, a),Πt(a))
Πt(a)

Πt(a) + Π∗
.

The total number of individuals in the fever state is then

Mt+1(f, a) = Mt+1(fs, a) +Mt+1(fi, a) (16)

To account for infected people, one counts those who started last period
susceptible or fever-susceptible and get infected and tested this period, but also
those who started last period infected or fever-infected who neither required
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hospitalization nor recovered:

Mt+1(i, a) = Mt(s, a)∆(a)ξpt(a)π(nt(s, a) + `t(s, a),Πt(a)) (17)

+Mt(fs, a)∆(a)ξpt(a)π(nt(f, a) + `t(f, a),Πt(a))

+ [Mt(fi, a) +Mt(i, a)] ∆(a)(1− φ(0, a))(1− α(a))

People in hospitals comprise those who entered last period infected or fever-
infected and do not recover but instead require hospitalization, as well as those
individuals that were already hospitalized in the previous period who neither
die nor recover:

Mt+1(h, a) = [Mt(fi, a) +Mt(i, a)] ∆(a)(1− φ(0, a))α(a) (18)

+Mt(h, a)∆(a)(1− δt(a))(1− φ(1, a))

The total number of individuals hospitalized is then

Mt(h) =
∑
a

Mt(h, a) (19)

Recovered and therefore resistant individuals comprise those who were in-
fected or fever-infected and recover, those hospitalized who do not die but re-
cover, and resistant individuals from the previous period:

Mt+1(r, a) = [Mt(fi, a) +Mt(i, a)] ∆(a)φ(0, a) (20)

+Mt(h, a)∆(a)φ(1, a) + ∆(a)Mt(r, a)

The right hand sides of equations (14) to (20) gives the map Tj for states j =

fs, fi, f, i, h, r.
For accounting purposes, the measure of deceased agents as a result of

Covid-19 is given by new Covid deaths and those who died of it in previous
periods:

Mt+1(deceased, a) = Mt(deceased, a) + (1− φ(1, a))δt(a)Mt(h, a)∆(a),

while the number of newly infected people is given by susceptible or fever-
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susceptible agents who get infected

Nt+1(i, a) = Mt(s, a)∆(a)π(nt(s, a) + `t(s, a),Πt(a))

+Mt(fs, a)∆(a)π(nt(f, a) + `t(f, a),Πt(a)).

B Details on Computations

B.1 Computing Weekly Rates

LetC be the fraction of the population that catches the common cold every year.
Then, the weekly infection rate Π∗ is given by:

Π∗ = 1− (1− C)1/52.

Now, consider an agent that is infected with Covid-19. They may recover
with probability φ(0) or require hospitalization with probability α. The follow-
ing table gives what happens to a measure 1 of agents that are infected right
now over the course of the next few weeks.

Week Frac recovered Frac still infected Frac in hospital

1 φ(0) (1− φ(0))(1− α) (1− φ(0))α

2 (1− φ(0))(1− α)φ(0) [(1− φ(0))(1− α)]2 (1− φ(0))(1− α)(1− φ(0))α

3 [(1− φ(0))(1− α)]2 φ(0) [(1− φ(0))(1− α)]3 [(1− φ(0))(1− α)]2 (1− φ(0))α

4 ... ... ...

Thus, the fraction of people that will need hospitalizations Fh is given by

Fh = (1− φ(0))α + (1− φ(0))(1− α)(1− φ(0))α + [(1− φ(0))(1− α)]2 (1− φ(0))α + ...

= (1− φ(0))α
[
1 + (1− φ(0))(1− α) + [(1− φ(0))(1− α)]2 + ...

]
= (1− φ(0))α

1

1− (1− φ(0))(1− α)
.

Solving out for α gives

α =
Bφ(0)

1−B(1− φ(0))
,

where B = Fh/(1−φ(0)). With φ(0) given by the average time for recovery, one
can use the formula above to get α.

We can do something similar for agents in hospitals to figure out at what
weekly rate they die. Here is the table:
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Week Frac recovered Frac still in hospital Frac dead

1 φ(1) (1− φ(1))(1− δ) (1− φ(1))δ

2 (1− φ(1))(1− δ)φ(1) [(1− φ(1))(1− δ)]2 (1− φ(1))(1− δ)(1− φ(1))δ

3 [(1− φ(1))(1− δ)]2 φ(1) [(1− φ(1))(1− δ)]3 [(1− φ(1))(1− δ)]2 (1− φ(1))δ

4 ... ... ...

Using the same steps above and denoting the fraction that die by Fd, we get:

δ =
Aφ(1)

1− A(1− φ(1))
,

where A = Fd/(1− φ(1)).

B.2 Basic Reproduction Number - R0

The probability that an infected agent leaves such state is: [φ(0) + (1− φ(0))α] ∆+

(1−∆). The squared brackets term is the probability of recovery and the prob-
ability that the agent requires hospitalization, conditional on surviving natural
causes (probability ∆). The last term is death due to natural causes. Hence, the
expected amount of time one stays in state i is:

Ti =
1

[φ(0) + (1− φ(0))α] ∆ + (1−∆)
.

The probability that an agent in a hospital leaves such state is: [φ(1) + (1 −
φ(1))δ]∆ + (1 − ∆). The squared brackets term is the probability of recovery
and the death-because-of-Covid probability, conditional on surviving natural
causes (probability ∆). The last term is death due to natural causes. Hence, the
expected amount of time one stays in state h is:

Th =
1

[φ(1) + (1− φ(1))δ] ∆ + (1−∆)
.

Now, the probability that one moves from the i state to the h state is given
by:

Ph =
(1− φ(0))α∆

1− (1− φ(0))(1− α)∆
.

Note that the expressions above should be functions of one’s age a, but we
have suppressed this for notational convenience.

Let ñ(a) denote the amount of time an infected person of age a spends out-
side. Let ` be the interaction time for people in hospitals. Finally, let n̄ be the
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average (across ages) amount of time people spend outside. At the outset of the
disease, a measure 1 of the population is healthy.

Then, R0(a) (i.e. for an infected person of age a) is given by:

R0(a) =
[
ñ(a)Ti(a) + `Ph(a)Th(a)

]
n̄Π0.

This is the average number of people someone infects (for a person of a
given age). The economy’s R0 will be the weighted average across ages:

R0 =
∑
a

ω(a)R0(a),

where ω(a) is the weight of age a in the population.

B.3 Computing CEV

We use a consumption equivalent variation (CEV) measure to evaluate the wel-
fare change of an agent between two scenarios. To do that, we compute the
relative change in the consumption good, c, that an agent needs to receive in
all periods and states of nature of a given scenario so that their expected dis-
counted utility measured in the first time period as a susceptible agent is equal
to that in another scenario. Moreover, we evaluate the value function of the
agents with λp = 0, the planner’s influence on the individual’s utility. This
parameter is just a way to operationalize a lockdown. Thus, we evaluate the
individual’s value function with the distorted allocation and λp = 0. For an
example of this welfare measure, Table 6 shows that old agents are indifferent
between the optimal policy and having their consumption increased by 6.47%
in all periods in the benchmark equilibrium.

C Additional Results

This section provides additional details and results for the following scenarios:
a world without altruism (Section C.1), a scenario in which a vaccine arrives
only after 15 years (Section C.2), details for the optimal lockdown (Section C.3),
a shelter-at-home policy with a late start (Section C.4), details for the optimal
lockdown with testing and quarantine (Section C.5), details on the model with
selective mixing (Section C.6), a calibration with hospital bed constraints (Sec-
tion C.7), and an alternative calibration based on different hospitalization and
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Table C1: No altruism
Benchmark Epidem.

Wks to peak hospitalizations (yng) 14.00 12.00
Wks to peak hospitalizations (old) 11.00 12.00
Hospitalizations p/ 1,000 @ peak (yng) 0.90 12.81
Hospitalizations p/ 1,000 @ peak (old) 0.22 11.11
Dead p/ 1,000 1year (yng) 1.37 4.04
Dead p/ 1,000 1year (old) 4.33 31.40
Dead p/ 1,000 1year (all) 2.00 9.89
Dead p/ 1,000 LR (yng) 1.83 4.04
Dead p/ 1,000 LR (old) 6.15 31.40
Dead p/ 1,000 LR (all) 2.75 9.89
Immune in LR (yng), % 38.57 85.29
Immune in LR (old), % 9.20 45.81
Immune in LR (all), % 32.29 76.84
GDP at peak - rel to BM 1.00 1.17
GDP 1year - rel to BM 1.00 1.10
Hrs @ home (yng) - peak 79.66 57.97
Hrs @ home (old) - peak 105.70 88.99
Hrs @ home (yng) - 6m 77.01 57.97
Hrs @ home (old) - 6m 104.31 88.99

death rates as provided by Ferguson et al. (2020) (Section C.8).

C.1 No Altruism

Table C1 compares the benchmark version of the model with no altruism (λa =

0) versus the epidemiological version with no behavioral adjustments. The
qualitative results are very similar to the original baseline results. The main
difference is that, without altruism, the death toll is higher. This is due to the
fact that, as infected agents do not change their behavior, they end up infect-
ing more people. Note that this world is riskier for healthy people, who behave
more cautiously in response. Note that the hours at home for susceptible agents
are higher compared to the benchmark with altruism.

C.2 Vaccine arrival in 15 years

In our baseline calibration, a vaccine arrives after 78 weeks. After this, nobody
gets infected with Covid-19 anymore. In this section, we explore the effects of
a scenario in which a vaccine only arrives after 15 years; i.e. T ∗ = 15 ∗ 52 = 780.
As the pandemic lasts longer now, more people get infected; in the long run,
more than half the population is immune. The death toll is consequently higher,
about twice as much as in the baseline calibration with the arrival of the vaccine
in 78 weeks. As discussed in Section 5, as herd immunity is more important
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Table C2: Vaccine arrives after 15 years

Benchmark Epidem. Age ext. partial Age ext. general No disease

Wks to peak hospitalizations (yng) 14.00 12.00 15.00 17.00
Wks to peak hospitalizations (old) 12.00 12.00 12.00 12.00
Hospitalizations p/ 1,000 @ peak (yng) 1.15 12.81 0.24 0.17
Hospitalizations p/ 1,000 @ peak (old) 0.25 11.11 0.25 0.10
Dead p/ 1,000 1year (yng) 1.62 4.04 0.42 0.35
Dead p/ 1,000 1year (old) 4.83 31.40 4.83 2.24
Dead p/ 1,000 1year (all) 2.31 9.89 1.36 0.76
Dead p/ 1,000 LR (yng) 2.97 4.04 1.58 2.44
Dead p/ 1,000 LR (old) 12.55 31.40 12.56 13.40
Dead p/ 1,000 LR (all) 5.02 9.89 3.93 4.79
Immune in LR (yng), % 62.77 85.29 33.35 51.53
Immune in LR (old), % 10.16 23.19 10.16 12.55
Immune in LR (all), % 51.51 72.00 28.39 43.19
GDP at peak - rel to BM 1.00 1.12 0.72 0.96 1.14
GDP 1year - rel to BM 1.00 1.07 0.72 0.93 1.10
Cost p/ life saved, million $ – – 15.24 2.42
Hrs @ home (yng) - peak 75.05 57.97 104.95 78.97 57.97
Hrs @ home (old) - peak 105.74 88.99 105.74 95.71 88.99
Hrs @ home (yng) - 6m 72.54 57.97 103.56 78.61 57.97
Hrs @ home (old) - 6m 104.10 88.99 104.10 95.56 88.99

Figure C1: Choices in the optimal policy
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without the vaccine, the age externality works differently: as the young become
more cautious, the burden of herd immunity falls more heavily on the old. The
death toll among the old thus rises.

C.3 Optimal Lockdown - Details

Figure C1 reports the time allocation for young and old individuals under an
age-specific optimal lockdown.

Table C3 presents the results of the optimal lockdown without the possibility
of telework. Deaths decrease substantially but not as much as in the benchmark
with teleworking. Figure C2 reports the policy parameters for the old and the
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Table C3: Optimal policy, no teleworking

Benchmark Optimal policy

Wks to peak hospitalizations (yng) 12.00 79.00
Wks to peak hospitalizations (old) 11.00 79.00
Hospitalizations p/ 1,000 @ peak (yng) 3.65 0.79
Hospitalizations p/ 1,000 @ peak (old) 0.28 0.17
Dead p/ 1,000 1year (yng) 2.83 0.08
Dead p/ 1,000 1year (old) 4.90 0.47
Dead p/ 1,000 1year (all) 3.27 0.17
Dead p/ 1,000 LR (yng) 3.05 0.49
Dead p/ 1,000 LR (old) 6.30 1.71
Dead p/ 1,000 LR (all) 3.75 0.75
Immune in LR (yng), % 64.39 10.32
Immune in LR (old), % 9.39 2.62
Immune in LR (all), % 52.62 8.67
GDP at peak - rel to BM 1.00 1.00
GDP 1year - rel to BM 1.00 0.67
Hrs @ home (yng) - peak 76.17 74.68
Hrs @ home (old) - peak 110.18 106.35
Hrs @ home (yng) - 6m 65.49 77.93
Hrs @ home (old) - 6m 106.47 97.32
CEV rel. to BM (yng), % – 0.46
CEV rel. to BM (old), % – 6.25

young and the resulting time spent outside.

C.4 Shelter-at-home with a Late Start

Figure C3 reports the result of a shelter-at-home policy that is only implemented
8 weeks after the outbreak of the pandemic. This strict policy requires individ-
uals to spend an extra 90% of time at home and lasts for 26 weeks.

Figure C2: Optimal policy, no teleworking
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Figure C3: Aggregate variables (late shelter-in-place)
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C.5 Optimal Lockdown with Testing and Quarantine - Details

Table C4 reports the results under an optimal policy in the presence of testing
and quarantines.

C.6 Selective Mixing - Details

In order to model selective mixing across age groups, assume that only a frac-
tion 1 − ζ of activities remain common and take up a corresponding fraction
1− ζ of the outside space. But a fraction ζ of activities can be separated into age
groups, and for this purpose a fraction ϑa of the remaining space is dedicated
only to individuals of this specific age group. Those spend T (ϑa) ≤ 1 of their re-
maining time there, the rest of the time is lost as individuals arrive in situations
where the desired space happens to be dedicated to the other group. Condi-
tional on being in common space where one can get infected, the infection rate
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Table C4: Optimal policy with testing and quarantines

Benchmark Optimal policy

Wks to peak hospitalizations (yng) 15.00 79.00
Wks to peak hospitalizations (old) 11.00 79.00
Hospitalizations p/ 1,000 @ peak (yng) 0.76 0.01
Hospitalizations p/ 1,000 @ peak (old) 0.20 0.01
Dead p/ 1,000 1year (yng) 1.22 0.01
Dead p/ 1,000 1year (old) 4.03 0.03
Dead p/ 1,000 1year (all) 1.82 0.01
Dead p/ 1,000 LR (yng) 1.66 0.01
Dead p/ 1,000 LR (old) 5.79 0.07
Dead p/ 1,000 LR (all) 2.55 0.02
Immune in LR (yng), % 35.12 0.24
Immune in LR (old), % 8.67 0.10
Immune in LR (all), % 29.46 0.21
GDP at peak - rel to BM 1.00 1.13
GDP 1year - rel to BM 1.00 1.02
Hrs @ home (yng) - peak 76.29 59.28
Hrs @ home (old) - peak 104.44 89.86
Hrs @ home (yng) - 6m 74.66 68.32
Hrs @ home (old) - 6m 103.31 90.57
CEV rel. to BM (yng), % – 1.33
CEV rel. to BM (old), % – 6.60

now becomes

Π̂t(a) = (1− ζ)Π0

∑
ã,j∈{fi,i,s}

(nt(j, ã) + `t(j, ã))Mt(j, ã) (21)

+ζT (ϑa)Π0

∑
j∈{fi,i,s}

T (ϑa)

ϑa
(nt(j, a) + `t(j, a))Mt(j, a).

The first line reflects the 1− ζ of a person’s time spent in the unrestricted space
where everything is unchanged from equation (11) in the main text: other in-
dividuals spend 1 − ζ of their time across 1 − ζ of the space which leaves the
number per area unchanged. The second line reflects the fraction ζ of a per-
son’s time spent on age-restricted activities, of which T (ϑa) is lost, where they
only meet others of the same age who spend T (ϑa)ζ of their time on ϑaζ parts
of the space. The expression reduces to the random mixing rate (11) if selectiv-
ity is ζ = 0. It also reduces to random mixing rate independent of selectivity ζ
if young and old would be completely identical and space is divided up such
according to group size (ϑy =

∑
j(M(a, j))/

∑
a,jM(a, j), say, in steady state)

and there is no loss of time due to separation (T (ϑa) = 1). If a particular part of
time is lost (i.e., T (ϑa) = ϑ

1/2
a ) then ϑa cancels in (21) and the expression reduces

to ”preferred matching” in Jacquez et al (1988) and Kremer (1996), only that
infected agents are here weighted by their activity outside the house.
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Table C5: Selective mixing

Benchmark Sel. mix.

Wks to peak hospitalizations (yng) 15.00 14.00
Wks to peak hospitalizations (old) 11.00 11.00
Hospitalizations p/ 1,000 @ peak (yng) 0.76 0.85
Hospitalizations p/ 1,000 @ peak (old) 0.20 0.16
Dead p/ 1,000 1year (yng) 1.22 1.33
Dead p/ 1,000 1year (old) 4.03 3.31
Dead p/ 1,000 1year (all) 1.82 1.75
Dead p/ 1,000 LR (yng) 1.66 1.79
Dead p/ 1,000 LR (old) 5.79 4.72
Dead p/ 1,000 LR (all) 2.55 2.41
Immune in LR (yng), % 35.12 37.74
Immune in LR (old), % 8.67 7.06
Immune in LR (all), % 29.46 31.17
GDP at peak - rel to BM 1.00 0.98
GDP 1year - rel to BM 1.00 0.99
Cost p/ life saved, million $ – 3.51
Hrs @ home (yng) - peak 76.29 77.99
Hrs @ home (old) - peak 104.44 102.34
Hrs @ home (yng) - 6m 74.66 76.12
Hrs @ home (old) - 6m 103.31 100.92
CEV rel. to BM (yng), % – -0.13
CEV rel. to BM (old), % – 1.64

The cost of selective mixing is that at some times some of the common space
is no longer available to a person who would like to use it. That is, there is a
time loss of (1 − T (ϑa))ζ > 0 per time unit spent outside, which acts as a tax
on both labor time n and outside leisure time `, which are reduced by this as
this time is lost and neither brings income nor utility. The simplest version is
T (ϑa) = ϑa, where each unit of space dedicated to the other group is lost.

To generate quantitative results for the selective-mixing scenario, we must
pick values for ζ and ϑ. According to the American Time Use Survey (ATUS),
42% of non-work time outside the home by the average American is spent pur-
chasing goods and services and in organizational, civic, and religious activities.
We take these activities as those that can be separated by age groups. We thus
set ζ = 0.42 Moreover, we set ϑo = 0.214 and ϑy = 0.786. The latter divides the
space up according to the relative sizes of each group in the overall population.
As explained above, this leaves a priori no reason for efficiency costs (i.e., if the
groups were identical, the infections would not change). The results from this
experiment are reported in Table C5.
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Table C6: Benchmark results (hospital constraints)

Benchmark Epidem. Age ext. partial Age ext. general

Wks to peak hospitalizations (yng) 12.00 11.00 11.00 17.00
Wks to peak hospitalizations (old) 9.00 12.00 9.00 12.00
Hospitalizations p/ 1,000 @ peak (yng) 0.41 6.45 0.27 0.12
Hospitalizations p/ 1,000 @ peak (old) 0.16 9.39 0.16 0.07
Dead p/ 1,000 1year (yng) 0.84 19.02 0.56 0.24
Dead p/ 1,000 1year (old) 3.48 33.36 3.48 1.62
Dead p/ 1,000 1year (all) 1.41 22.09 1.18 0.54
Dead p/ 1,000 LR (yng) 1.36 19.02 0.90 0.38
Dead p/ 1,000 LR (old) 5.34 33.36 5.35 2.48
Dead p/ 1,000 LR (all) 2.21 22.09 1.85 0.83
Immune in LR (yng), % 28.66 82.87 9.27 8.10
Immune in LR (old), % 8.02 44.56 8.02 3.71
Immune in LR (all), % 24.24 74.67 9.01 7.16
GDP at peak - rel to BM 1.00 1.16 0.74 0.99
GDP 1year - rel to BM 1.00 1.10 0.74 0.96
Cost p/ life saved, million $ – – 48.26 2.10
Hrs @ home (yng) - peak 78.56 57.97 101.86 79.28
Hrs @ home (old) - peak 101.85 88.99 101.84 94.76
Hrs @ home (yng) - 6m 76.33 57.97 101.38 79.08
Hrs @ home (old) - 6m 101.07 88.99 101.06 94.65

C.7 Hospital Bed Constraints

The American Hospital Association reports the existence of 84,555 intensive
care beds excluding neonatal units, implying a per-capita number ofZ = 0.032607%

ICUs.40 We set δ̃2(a) = 1, so that the death for an agent in need of hospitaliza-
tion and that does not receive a bed is certain to occur. The results are provided
in Table C6.

C.8 Details on Calibration based on Ferguson et al. (2020)

We take the age-dependent transition rates from Ferguson et al. (2020) and ag-
gregate to our two age groups (20-64 and 65-plus) using the relative population
weights for the US. This yields the following weekly probability of recovery
from mild symptoms: φ(0, y) = 0.991 and φ(0, o) = 0.893. The age-dependent
weekly death rates are: δ(y) = 0.373 and δ(o) = 0.371. Table C7 compares these
parameters with the ones from the benchmark calibration. Table C8 provides
the results for this calibration.

40See https://www.aha.org/statistics/fast-facts-us-hospitals
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Table C7: Parameters - baseline calibration and Ferguson et al. (2020)

Parameter Bench. calibration Ferguson et al. (2020)
φ(0, y) 0.983 0.991
φ(0, o) 0.954 0.893
φ(1, y) 0.284 0.284
φ(1, o) 0.284 0.284
δ(y) 0.065 0.373
δ(o) 0.738 0.371

Table C8: Alternative calibration - based on Ferguson et al. (2020)

Benchmark Epidem.

Wks to peak hospitalizations (yng) 13.00 12.00
Wks to peak hospitalizations (old) 11.00 12.00
Hospitalizations p/ 1,000 @ peak (yng) 0.66 3.42
Hospitalizations p/ 1,000 @ peak (old) 0.27 13.24
Dead p/ 1,000 1year (yng) 0.63 1.05
Dead p/ 1,000 1year (old) 4.95 36.53
Dead p/ 1,000 1year (all) 1.55 8.65
Dead p/ 1,000 LR (yng) 0.71 1.05
Dead p/ 1,000 LR (old) 6.66 36.53
Dead p/ 1,000 LR (all) 1.98 8.65
Immune in LR (yng), % 57.14 85.22
Immune in LR (old), % 8.38 44.84
Immune in LR (all), % 46.70 76.58
GDP at peak - rel to BM 1.00 1.09
GDP 1year - rel to BM 1.00 1.03
Hrs @ home (yng) - peak 70.70 57.97
Hrs @ home (old) - peak 109.39 88.99
Hrs @ home (yng) - 6m 65.78 57.97
Hrs @ home (old) - 6m 106.68 88.99
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