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The equilibrium (defined in Section 3.1.3 in the main text) can be defined in several
different ways, in particular in sequence notation or as a recursive competitive equilib-
rium, and as a household problem, a dynastic problem or even a (modified) planner’s
problem. Since the household sequence problem is the easiest to interpret and be-
cause it is this formulation for which the efficiency concepts are defined, we stick to it
throughout the paper. However, the dynastic problem or the planner’s problem are the
most convenient formulations for some of the technical proofs. To use these results in
the paper, we need to formally establish that the various versions are equivalent. This
is what we do in this Supplementary Appendix (see Figure S.1 for a graphical depic-
tion). These results closely follow Alvarez (1994) but extend the setup to two periods
of consumption and the presence of a minimum intergenerational transfer constraint.

More precisely, Section S.1 derives the equivalent of equation (4) from the point
of view of the old household, which is convenient when specifying the boundedness
condition for Assumption 1(e). Lemma S.1 in Section S.2 shows equivalence between
the household and dynastic sequence problems. The latter formulation is used in Sec-
tion S.3 to show that equation (4) uniquely defines a utility function U . To show that
the first-order and transversality conditions for the equilibrium described in the main
text are necessary and sufficient to characterize the equilibrium, we set up a Pseudo-
Planner’s problem in sequence and recursive form in Section S.4.1 and show that it
is equivalent to the dynastic sequence problem. We then use standard dynamic pro-
gramming techniques to characterize the Pseudo-Planner’s value function and derive
the necessary and sufficient conditions for optimality in Section S.4.2. Again using the
Pseudo-Planner’s problem, we show that decision rules and prices are continuous in
the minimum transfer constraint, b, in Section S.4.3. This result is needed for some of
the proofs in Section 4.2 in the main text. For completeness, we also define a recursive
competitive equilibrium (RCE, see Section S.5 Definition S.6). Proposition S.4 proves
equivalence between the equilibrium defined in the main text and the RCE.
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S.1 Middle-aged and Old Household Problems

In this section, we show that the middle-aged household problem can be split into her

problem when middle-aged and when old. In addition, we show that conditional on

the transfer, an old agent agrees with her middle-aged children on how to split income

between consumption, fertility, and savings. This is because altruism Ψ is specified as a

function of children’s utility, Ut. Therefore, rewriting the problem from the perspective

of the old is equivalent to our original formulation.

Start with the problem of a middle-aged household in period t, as defined by the

utility function (4) and the constraints (2) and (3). Since this is the household problem

from the perspective of a middle-aged agent, we write the utility function here as Um
t =

u(cmt )+βu(cot+1)+Ψ(nt, U
m
t+1). Define the utility when old as Uo

t ≡ βu(cot )+Ψ(nt−1, U
m
t ).

Here, we can see that the old agent trades off cmt , c
o
t+1 and nt in the same way as her

children. The only variable old parents and their middle-aged children in period t

disagree on is cot and, hence, the choice of bt which determines how consumption is

allocated inter-generationally. Given these insights, we can plug in for Um
t , to get

Uo
t = βu(cot ) + Ψ(nt−1, u(c

m
t ) + βu(cot+1) + Ψ(nt, U

m
t+1))

and use the definition of Uo
t+1 to derive

Uo
t = βu(cot ) + Ψ(nt−1, u(c

m
t ) + Uo

t+1). (S.1)

This logic shows that the two formulations are equivalent, which turns out to be useful

for some of the proofs.

S.1.1 Old Household Sequence Problem

In this subsection we specify the old household’s sequence problem. Since u(.) is

strictly increasing, the budget constraints will hold with equality. Given this, let us

define the optimal transfer function, b̃,

b̃(z, xt, xt+1;wt, rt) ≡ argmax
bt≥b

{βu(rtst−nt−1btwt)+Ψ(nt−1, u(wt(1+bt)−st+1−θtnt)+z).

(S.2)
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where xt = (st, nt−1). Recall our notation for sequences of individual states, x
˜t

=

{xk}
∞
k=t. Let the set of budget feasible allocations from xt = (st, nt−1) be given by

Π(xt, w˜ t, r˜t
) = {x

˜t
: (sk+1 + θknk)nk−1 ≤ wknk−1 + rksk, ∀k ≥ t, xt given}.

Hence, the utility of an old agent in equation (S.1) can be written as a function of the

infinite sequence of state variables x
˜t

∈ Π(xt, w˜ t, r˜t
), and prices (w

˜ t, r˜t
):

Uo(x
˜t
;w
˜ t, r˜t

) = βu(rtst − nt−1b̃(.)wt) (S.3)

+Ψ(nt−1, u(wt(1 + b̃(.))− st+1 − θtnt) + Uo(x
˜t+1;w˜ t+1, r˜t+1))

where x
˜t

= (xt, x˜t+1), i.e. x
˜t+1 agrees with x

˜t
from t + 1 on. If we can show that

equation (S.3) defines a unique function Uo(.) for all x
˜t

∈ Π(xt, w˜ t, r˜t
), then we can

deduce the unique function

Um(bt, x˜t
;w
˜ t, r˜t

) = u(wt(1 + bt)− st+1 − θtnt) + Uo(x
˜t+1;w˜ t+1, r˜t+1) (S.4)

for all x
˜t

∈ Π(xt, w˜ t, r˜t
) and bt = b̃(.). Note that Um is only defined for rationalizable

transfers b̃, as is standard in models with recursively defined preferences. We deal with

uniqueness in Section S.3.

We can formally state the boundedness condition in Assumption 1(e). This is a

natural extension of the condition in Assumption 4.11. in Stokey, Lucas, and Prescott

(1989) (Chapter 4, Section 3), Assumption 1d in Alvarez and Stokey (1998) or Assump-

tion 5’ in Alvarez (1994). Let ||.||E denote the Euclidean norm and |.| the absolute value.

Assumption S.1 The objective is bounded in the sense that ∃B ∈ (0,∞) such that for all

t ≥ 0, for all xt+1 = (st+1, nt−1) s.t. (st+1 + θtnt)nt−1 ≤ wtnt−1 + rtst and for all z ∈ R we

have

|βu(rtst − nt−1b̃(.)wt) + Ψ(nt−1, u(wt(1 + b̃(.))− st+1 − θtnt) + z)|

≤ B{(||(st, nt−1, 1)||E)
ν + nν

t−1(||(st+1, nt, 1)||E)
ν + |z|}

where b̃(.) as defined in (S.2).

Finally, we define the old household’s sequence problem in Definition S.1 where the

left-hand side is the optimized value44 as a function of the initial conditions s0 and n0,

while the right-hand side describes the choice problem, where the objective function is

maximized over the entire sequences s
˜0

and n
˜0

.

44We use Uo∗∗ here because Uo∗ is used for the optimized value of the recursive problem.
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Definition S.1 Old Household Sequence Problem (HSP):

Uo∗∗(s0, n0;w˜0, r˜0
)) = sup{Uo(s

˜0
, n
˜0
;w
˜0, r˜0

) : (s
˜0
, n
˜0
) ∈ Π(s0, n0;w˜0, r˜0

))}

S.2 Household and Dynastic Sequence Problems

In this section, we show that the old household problem in sequence form (described

in Section S.1.1) can be written in dynasty aggregates. Note that this results in a convex

constrained set which is useful because it allows us to prove that Uo
D is uniquely deter-

mined over budget feasible sequences and implies a unique household value function

U that solves equation (4). We do this in Section S.3. This formulation is also the basis

from which the Pseudo-Planner’s problem (in sequence and recursive form) is derived.

The latter allows us to use standard techniques to characterize the equilibrium alloca-

tion, which we do in Sections S.4.2 and S.4.4.

Let us define the primitives of the dynastic problem. Normalize the measure of ini-

tial old to No
0 = 1. Let Nm

t and No
t be the number of middle age and old descendants of

the initial old in period t, respectively: Nm
t = Nm

t−1nt−1 and Nm
t−1 = No

t . Let Cm
t ≡ cmt N

m
t

and Co
t ≡ cotN

o
t be the total consumption of the middle- and old-aged descendants in

period t, respectively. Also define St ≡ No
t st and Bt ≡ Nm

t bt as the dynastic savings

and transfers. The dynastic state is xDt ≡ (St, N
m
t , No

t ). Note that this relates to the

individual state as follows: xDt = (No
t st, N

o
t nt−1, N

o
t ) = (No

t xt, N
o
t ) = No

t (xt, 1). Analog

to the household problem, we let x
˜Dt denote the sequence of dynastic states.

Recall that by Assumption 1, Ψ is either homogenous of degree ν or separable in

its two arguments. For the h.o.d. ν case (i), define the period utility, altruism, and

dynastic utility functions as follows.

uD(C,N) ≡ (N)νu

(
C

N

)

ΨD(N,U) ≡ Ψ

(
N,

U

Nν

)
(S.5)

Uo
D(x˜Dt;w˜ t, r˜t

) ≡ (No
t )

νUo
t (x˜t

;w
˜ t, r˜t

).

Then it is easy to show that Ψ being homogeneous of degree ν in n (i.e. Assump-

tion 1(c)(i)) implies that ΨD is homogeneous of degree ν in the sense that ΨD(λN, λνU) =

λνΨD(N,U) for all λ > 0 and ν 6= 0.

We now deal with the non-separable case (ii) from Assumption 1(c). Note that

for several of the proofs we need ΨD to be homogenous of degree ν, which with the
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definition of ΨD would not be true for case (ii). However, with some appropriate redef-

initions, case (ii) can also be written as a homogeneous function. Here (and in Section

S.2.1) we briefly discuss how this works without going into too much detail to avoid

tedious notation and repetition. Define two new functions that depend only on n and

U respectively: h(n) and Ψ̃(U) so that Ψ(n, U) = h(n) + Ψ̃(U). Since by construction Ψ̃

does not depend on n, we can also write
˜̃
Ψ(n, U) and assume that

˜̃
Ψ is h.o.d. of degree

ν = 0 in n. This way of writing it assures that we can use the same steps in the proofs

as for the non-separable case where Ψ(n, U) is assumed to be h.o.d. of degree ν in n.

Specifically, for the separable case (ii), define the dynastic functions as follows:

ΨD(N,U) ≡
˜̃
Ψ

(
N,

U

Nν

)
.

Further, define

hD(N
o, Nm) ≡ h

(
Nm

No

)
.

Clearly, hD is homogeneous of degree 0 in (No, Nm). It is also easy to show that
˜̃
Ψ(n, U) being h.o.d. ν = 0 in n implies that ΨD has the same property as in case (i) but

with ν = 0. These are the properties needed for several of the proofs.

Then, it is straightforward to show that Assumption 1 is equivalent to:

Assumption S.2

(a) uD(., .) is continuous, strictly concave, continuously differentiable, increasing, and u′
D(0, N) =

∞.

(b) ΨD(N,U) is continuous, strictly concave in n and weakly concave in U , continuously

differentiable, and strictly increasing in both arguments.

(c) ΨD is homogeneous of degree ν in the sense that

ΨD(λN, λνU) = λνΨD(N,U), ∀λ > 0, N ∈ R+, U ∈ R

with either (i) or (ii):

(i) ν < 1, ν 6= 0 and uD is strictly increasing in N ;

(ii) ν = 0 and hD(N
o, Nm) is homogeneous of degree 0.

(d) ΨD(N,U) discounts at rate ζ < 1 in the sense that

∀N ∈ R+, U ∈ R, a > 0,ΨD(N,U + a) ≤ ΨD(N,U) + ζa.

(e) The objective satisfies a boundedness condition on the set of budget feasible allocations.
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S.2.1 Dynastic Utility

Start with the utility function of an old household in period t defined in equation (S.1)

and multiply with (No
t )

ν to get

(No
t )

νUo
t = (No

t )
νβu(cot ) + (No

t )
νΨ(nt−1, u(c

m
t ) + Uo

t+1).

From the definition of ΨD, we have Ψ(nt−1, u(c
m
t ) + Uo

t+1)) = ΨD(nt−1, n
ν
t−1u(c

m
t ) +

nν
t−1U

o
t+1). Thus,(No

t )
νUo

t = (No
t )

νβu(cot ) + (No
t )

νΨD(nt−1, n
ν
t−1u(c

m
t ) + nν

t−1U
o
t+1).

For the non-separable case (i), using the homogeneity in Assumption S.2.(c), we can

rewrite the problem as

(No
t )

νUo
t = β(No

t )
νu(cot ) + ΨD(N

o
t nt−1, (N

o
t )

νnν
t−1u(c

m
t ) + (No

t )
νnν

t−1U
o
t+1).

Using the definitions of Cm
t , Co

t , N
m
t , and No

t , rewrite as

(No
t )

νUo
t = β(No

t )
νu

(
Co

t

No
t

)
+ΨD(N

m
t , (Nm

t )νu

(
Cm

t

Nm
t

)
+ (No

t+1)
νUo

t+1).

From the definitions of uD and Uo
Dt, this is

Uo
Dt = βuD(C

o
t , N

o
t ) + ΨD(N

m
t , uD(C

m
t , Nm

t ) + Uo
Dt+1). (S.6)

For the separable case (ii), the expression needs to be slightly modified

Uo
Dt = βuD(C

o
t , N

o
t ) + hD(N

o
t , N

m
t ) + ΨD(N

m
t , uD(C

m
t , Nm

t ) + Uo
Dt+1). (S.7)

In the remaining proofs we focus on the non-separable case to avoid having to carry

hD(N
o
t , N

m
t ) around. However, the logic works exactly the same with this additional

term.
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S.2.2 Dynastic Constraints

Consider the constraint set from the household problem:

cmt + θtnt + st+1 ≤ wt(1 + bt)

cot+1 + ntbt+1wt+1 ≤ rt+1st+1

bt+1 ≥ bt+1

cmt , c
o
t+1, nt ≥ 0.

Use the definition of aggregate variables and multiplying through, this is

Cm
t + θtN

m
t+1 + St+1 ≤ wt (N

m
t +Bt)

Co
t+1 +Bt+1wt+1 ≤ rt+1St+1

Bt+1 ≥ bt+1N
m
t+1

Cm
t , Co

t+1, N
m
t+1, N

m
t ≥ 0.

Using these transformations, we can now specify an old dynastic sequence problem.

S.2.3 Dynastic and Old Household Sequence Problems: Equivalence

Since uD(.) is strictly increasing, the budget constraints will hold with equality. Given

this, let us define the optimal transfer function, B̃, ∀t ≥ 0, z ∈ R,

B̃(z, xDt, xDt+1;wt, rt) ≡ argmax
Bt≥btN

m
t

{βuD(rtSt−Btwt, N
o
t )+ΨD(N

m
t , uD(wt(N

m
t +Bt)−St+1−θtN

m
t+1, N

m
t )+z)

(S.8)

where xDt = (St, N
m
t , No

t ). Note that given Assumption S.2(c), we have

B̃(λνz, λxDt, λxDt+1;wt, rt) = λB̃(z, xDt, xDt+1;wt, rt). (S.9)

Note that this homogeneity property is specific to the dynastic problem and will help

in the proofs. In particular, it will be used to show that the recursively defined utility

is homogeneous of degree ν.

Recall our notation that x
˜Dt = {xDk}

∞
k=t. Let the set of budget feasible allocations

from xDt = (St, N
m
t , No

t ) be given by

ΠD(xDt, w˜ t, r˜t
) ≡ {x

˜Dt : Sk+1 + θkN
m
k+1 ≤ wkN

m
k + rkSk, ∀k ≥ t, xDt given}.
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From the derivations in the previous subsection and given our definitions of aggregate

variables, we have x
˜t

∈ ΠD(xt;w˜ t, r˜t
) if and only if x

˜Dt ∈ ΠD(xDt;w˜ t, r˜t
). Also, bt ≥ bt if

and only if B ≥ Nm
t bt. Hence, the dynastic utility as a function of the infinite sequence

of state variables x
˜Dt ∈ ΠD(xDt, w˜ t, r˜t

), and prices (w
˜ t, r˜t

), can be written as

Uo
D(x˜Dt;w˜ t, r˜t

) = βuD(rtSt − B̃(.)wt, N
o
t ) (S.10)

+ΨD(N
m
t , uD(wt(N

m
t + B̃(.))− St+1 − θtN

m
t+1, N

m
t ) + Uo

D(x˜Dt+1;w˜ t+1, r˜t+1))

where x
˜Dt = (xDt, x˜Dt+1), i.e. x

˜Dt+1 agrees with x
˜Dt from t+ 1 on.

Note that, if we can show that equation (S.10) defines a unique function Uo
D(.) for

all x
˜Dt ∈ Π(xDt, w˜ t, r˜t

) (which we do in Section S.3), then we can deduce the unique

function

Uo(x
˜t
;w
˜ t, r˜t

) =
Uo
D(x˜Dt;w˜ t, r˜t

)

(No
t )

ν
(S.11)

that solves equation (S.3), where x
˜t

is related to x
˜Dt as explained above.

We are now ready to formally state the boundedness condition in Assumption S.2(e).

This is a natural extension of the condition in Assumption 4.11. in Stokey, Lucas, and

Prescott (1989) (Chapter 4, Section 3), Assumption 1d in Alvarez and Stokey (1998) or

Assumption 5’ in Alvarez (1994). Let ||.||E denote the Euclidean norm.

Assumption S.3 The objective is bounded in the sense that ∃B ∈ (0,∞) such that for all

t ≥ 0, for all (xDt, xDt+1) such that [St+1 + θtN
m
t+1 ≤ wtN

m
t + rtSt] and for all z ∈ R we have

|βuD(rtSt − B̃(.)wt, N
o
t ) + ΨD(N

m
t , uD(wt(N

m
t + B̃(.))− St+1 − θtN

m
t+1, N

m
t ) + z)|

≤ B{(||xDt||E)
ν + (||xDt+1||E)

ν + |z|}

where B̃(.) as defined in (S.8).

Next, we define the dynastic sequence problem as, where as in Definition S.1 the right-

hand side is the choice problem and Uo∗∗
D denotes the optimized value.

Definition S.2 Dynastic Sequence Problem (DSP):

Uo∗∗
D (xD0;w˜0, r˜0

)) = sup{Uo
D(x˜D0;w˜0, r˜0

) : x
˜D0 ∈ ΠD(xD0;w˜0, r˜0

))} .

Lemma S.1 The problems defined in Definitions S.1 and S.2 are equivalent.

Proof. Let x
˜0

∈ Π(x0, w˜0, r˜0
) and x

˜D0 ∈ ΠD(xD0, w˜0, r˜0
) be any budget feasible se-

quences such that st = St/N
o
t and nt−1 = Nm

t /No
t . Then by definition we haveUo

D(xD0, w˜0, r˜0
) =

(No
0 )

νUo(x0, w˜0, r˜0
). Since No

0 is part of the initial condition, their suprema, x
˜
∗
0 and x

˜
∗
D0
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are also such that s∗t = S∗
t /N

o∗
t and n∗

t−1 = Nm∗
t /No∗

t . See also Remark 1 p.20 in Alvarez

(1994).

Next, to state Assumption 2 more precisely we need some preliminaries. Define κ,

the minimum or maximum rate of change of xD as follows.

Definition S.3 κ ≡ sup{||xDt+1||E/||xDt||E, (xDt, xDt+1) s.t. [St+1 + θtN
m
t+1 ≤ wtN

m
t +

rtSt]}

κ ≡ inf{||xDt+1||E/||xDt||E, (xDt, xDt+1) s.t. [St+1 + θtN
m
t+1 ≤ wtN

m
t + rtSt]}

If ν > 0, define κ ≡ κ, if ν < 0, define κ ≡ κ.

We are now ready to state the boundedness condition in Assumption 2 formally.

Assumption S.4 Assume κ > 0 and κνζ < 1.

The intuition of this bound is as follows. If ν > 0, Uo
D ≥ 0, and we have to make

sure not to go to +∞ by bounding the growth rate of the state variable. If, on the other

hand, ν < 0, Uo
D ≤ 0, and we have to make sure not to go to −∞ by bounding the

drop rate of the state variable. It is easy to see that Definition S.3 implies the following

remark:

Remark 1 ∀ν < 1, κν ≥ (||xDt+1||E/||xDt||E)
ν .

Remark 1 together with Assumptions S.3 and S.4 will be used in several proofs show-

ing the utility is bounded.

S.2.4 Dynastic Formulations for BB and RB

For the utility specifications introduced in Section 3.3, the dynastic formulation can be

expressed as follows. Assuming u(x) = x1−σ

1−σ
, g(x) = x1−ε and h(x) = u(x), we get:

BB UoBB
D,s =

∞∑

t=s

ζ t−s

[
β(No

t )
σ−ε(Co

t )
1−σ + ζ(Nm

t )σ−ε(Cm
t )1−σ

1− σ

]
(S.12)

RB UoRB
D,s =

∞∑

t=s

ζ t−s

[
(No

t )
σ−1[β(Co

t )
1−σ + γ(Nm

t )1−σ] + ζ(Nm
t )σ−1(Cm

t )1−σ

1− σ

]

which are the utility functions corresponding to equation (S.10).

By assumptions S.2(a) and (b) we need that the utility is strictly increasing and

strictly concave in all its arguments, {Nm
t , Cm

t , Co
t }

∞
t=s. Some of these conditions are
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useful in comparing the two specifications. In particular, for utility to be strictly in-

creasing in Nm
t in the RB−altruism, the condition boils down to:

RB. γu′(nt) > ζ

[
u′(cmt+1)c

m
t+1 + βu′(cot+2)c

o
t+2 + γu′(nt+1)nt+1

]

nt

. (S.13)

This condition says that the direct utility benefit has to be strictly larger than the indi-

rect utility cost of diluting per generation consumption and fertility one period later.

With logarithmic utility, this condition boils down to:

RB(log). γ > ζ(1+β)
1−ζ

. (S.14)

Following Jones and Schoonbroodt (2010), there are three sets of joint parameter

restrictions that ensure that utility satisfies the desired monotonicity and concavity

properties for BB−type altruism:

BB.1 0 < ε < σ < 1;

BB.2 1 < σ < ε;

BB.3 1− ε = δ(1− σ) for some δ > 1 and σ → 1.

(S.15)

In the last case, utility is separable and logarithmic and hence equivalent to the RB

specification with logarithmic utility with γ ≡ δζ(1+β)
1−ζ

. Since δ > 1, condition (S.14) is

satisfied.45

Further, it is straightforward to verify that utility is homogeneous of degree ν =

1 − ε in the BB—case and homogeneous of degree ν = 0 in the RB—case. Hence,

Asumption S.2(c) is satisfied. Finally, Assumption S.2(d) is satisfied if

ζ < 1. (S.16)

S.3 Equation (4) uniquely defines a utility function U

The next proposition states that the function U that we implicitly defined by equa-

tion (4) exists and is unique. Some definitions are needed. Let X be the set of budget

feasible sequences, x
˜0

∈ Π(x0, w˜0, r˜0
) given prices (w

˜0, r˜0
), for some initial condition,

x0, where xt = (st, nt−1).

45Details on the necessary utility transformations that lead to this result are available upon request.
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Proposition S.1 There is a unique function U : b̃(.) × X × R
∞
+ × R

∞
+ → R satisfying

equation (4).

Proof. We prove this proposition in three main steps and several intermediate steps.

For full details, see Technical Appendix T.1.

Let XD ≡ {x
˜D0 : x˜D0 ∈ ΠD(xD0;w˜

, r
˜
), some xD0 ∈ R

3
+, ||x˜D0||

ν
κ < ∞},

where ||x
˜D0||

ν
κ ≡ [sup{(||xDt||E/κ

t)ν : t ≥ 0}]1/ν ,

UD ≡ {U : XD ×R
∞ ×R

∞ → R : U continuous, h.o.d. ν, and ν ||U|| < ∞},

where ν ||U|| ≡ sup{|U(x
˜D

)|/||(x
˜D

)||νκ : x
˜D

∈ XD ⊆ R
∞}

Step 1: If Assumption S.2 (which is equivalent to Assumption 1) is satisfied, the func-

tion Uo
Dt is uniquely defined through equation (S.10). This part closely follows the proof

of Lemma 5, p. 37, in Alvarez (1994).

To prove Step 1, we proceed as follows:

• Given U ∈ UD, define an operator JU from the right-hand side of equation (S.10);

• show that UD is complete;

• show that J maps UD into itself;

• show that J is a contraction of modulus κνζ .

To show that J is a contraction mapping, we follow Alvarez (1994) using an ap-

propriately modified version of Blackwell’s sufficient conditions (see Lemma T.1).

The only difference from the standard version is the definition of (U + a). Given

this, we need to show that:

– J is monotone;

– J discounts.

Step 2: Using the definition of Uo
Dt in relation to Uo

t in equation (S.5), it is easy to see

that Uo
t is uniquely defined through equation (S.3).

To prove Step 2, we show:

• Claim i: Uo solves equation (S.3);

• Claim ii: Uo is unique.

Step 3: Using the definition of Uo
t in relation to Um

t in equation (S.4), it follows that

Ut = Um
t is uniquely defined through equation (4) in the main text.

To prove Step 3, we show:
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• Claim iii: Um solves equation (4);

• Claim iv: Um is unique.

S.4 Characterization of equilibrium allocations: details

We have not yet fully characterized the equilibrium. To do this, we show equivalence

of Definition S.2 to a planning problem in sequence form which has a natural recursive

formulation, so that we can apply standard dynamic programming techniques (Sec-

tion S.4.1). Note that because of the transfer constraint, this will not be a social planner

in the usual sense. Rather, we write down a modified planning problem where the con-

straint is explicitly taken into account. We call it a “Pseudo-Planner’s problem,” U∗
P .

The “Pseudo-Planner” takes the marginal product of labor and the minimum transfer

constraint as given in the intra-temporal allocation of consumption, but is otherwise

only subject to feasibility. Note that thanks to Assumption 2, the Pseudo-Planner’s con-

straint set is convex. We then show that, thanks to Assumption S.2, her value function

is increasing, concave and differentiable so that first-order and envelope conditions can

be derived. It is then fairly standard to show that the intra-temporal transfer condition,

the Euler equations together with the transversality condition are necessary and suf-

ficient to characterize the Pseudo-planner’s optimum (Section S.4.2). Rewriting them

in terms of household variables, using the firm’s optimality conditions and the budget

constraints gives us the equations above. Because of the equivalences described in Sec-

tions S.1 and S.2 and Lemma S.2 below, this shows that equations (6) to (11) together

with the budget constraints and feasibility are necessary and sufficient to character-

ize the equilibrium. Finally, in Section S.4.4, we use the Pseudo-Planner’s problem to

show that decision rules and equilibrium prices are continuous functions on b. This is

needed in several of the proofs in the main text (see results in Section 4.2).46

S.4.1 Pseudo-Planner’s Problem: Setup and Properties

Let us first set up the Pseudo-Planner’s problem in sequence form where the Pseudo-

Planner takes the numbers MPt as given. In Lemma S.2, MPt will be set to the marginal

46See also Figure S.1 for a graphical depiction of the results in this appendix.
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product of labor which leads to the equivalence to the dynastic sequence problem and

the equilibrium in Section 3.1.3.

Let us define the optimal transfer function, B̃P , ∀t ≥ 0, z ∈ R:

B̃P (z, xPt, xPt+1;MPt) ≡ (S.17)

argmax
Bt≥Nm

t bt

{βuD(F (Kt, N
m
t )− (Nm

t +Bt)MPt, N
o
t ) + ΨD(N

m
t , uD(MPt(N

m
t +Bt)−Kt+1 − θtN

m
t+1, N

m
t ) + z)

where xPt = (Kt, N
m
t , No

t ). Note that given Assumption S.2(c), we have

B̃P (λ
νz, λxPt, λxPt+1;MPt) = λB̃P (z, xPt, xPt+1;MPt). (S.18)

Note that this homogeneity property will help in the proofs. In particular, it will be

used to show that the value function is homogeneous of degree ν.

Let the set of feasible allocations from xPt = (Kt, N
m
t , No

t ) be given by

ΠP (xPt) ≡ {x
˜Pt : Kk+1 + θkN

m
k+1 ≤ F (Kk, N

m
k ), ∀k ≥ t, xPt given}.

Hence, the Planner’s utility as a function of the infinite sequence of state variables

x
˜Pt ∈ ΠP (xPt), and M

˜Pt, can be written as

Uo
P (x˜Pt;M˜Pt) = βuD(F (Kt, N

m
t )− (Nm

t + B̃P (.))MPt, N
o
t ) (S.19)

+ΨD(N
m
t , uD(MPt(N

m
t + B̃P (.))−Kt+1 − θtN

m
t+1, N

m
t ) + Uo

P (x˜Pt+1;M˜Pt+1))

where x
˜Pt = (xPt, x˜Pt+1), i.e. x

˜Pt+1 agrees with x
˜Pt from t+1 on. Note that a version of

the Claim in Proposition S.1 can be used to show that Uo
P is uniquely defined through

equation (S.19).

Definition S.4 Pseudo-Planner’s Sequence Problem (PSP):

Uo∗∗
P (xP0;M˜P0) = sup{Uo

P (x˜P0;M˜P0) : x˜P0 ∈ ΠP (xP0)}

Lemma S.2 Let MPt = FN(Kt, N
m
t ), ∀t. Then B̃P from equation (S.17) is equal to B̃ from

equation (S.8), the solution to the Pseudo-planner’s problem in Definition S.4 corresponds to

the solution to the dynastic problem in Definition S.2.

Proof. By Euler’s theorem, we have FKK = F (K,N)−FNN . Using this and the firm’s

optimality conditions, the objective in equations (S.8) and (S.17) are the same and so

is the constraint, Bt ≥ Nm
t b. Hence B̃P = B̃. Euler’s theorem also implies that the
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constraint set for the Pseudo-planner, ΠP , is the same as for the dynasty, ΠD. Again,

using Euler’s theorem and the firm’s optimality conditions, the arguments of uD and

ΨD in equations (S.19) and (S.10) are the same. Hence, the utility recursively defined

through these equations are the same. Therefore, the solutions to the two problems are

the same.

Thanks to the equivalences in Sections S.1 and S.2, written in terms of household

variables, the allocation is also equivalent to the equilibrium allocation described in

Section 3.1.3. Thus, if we find necessary and sufficient conditions to characterize the

Pseudo-Planner’s problem, we can rewrite them in terms of household variables and

obtain a set of necessary and sufficient conditions to characterize our equilibrium.

To do so, we first need to show that the Pseudo-Planner’s value function has the

desired properties. This is most easily done in a recursive formulation of the problem.

Definition S.5 Pseudo-Planner’s FE (PFE): Given a stationary law of motion for M ′
P =

LP (MP ), define the following Bellman equation:

U∗
P (xP ;MP ) = sup

x′

P

{βuD(F (K,Nm)− (Nm + B̃P (.))MP , N
o)

+ΨD[N
m, uD(MP (N

m+B̃P (.)−K ′−θNm′

), Nm)+U∗
P (x

′
P ,M

′
P ))]

x′
P s.t. [K ′ + θNm′

≤ F (K,Nm)]}.

Let CP (ν) ≡ {F : XP ×R+ → R : F continuous, F h.o.d. ν, ||F ||ν < ∞}

where XP ⊆ R
3
+ is the state space and ||F ||ν ≡ sup{(|F (xP )|/(||xP ||E)

ν : xP ∈ XP}.

Further, define the operator, TP , as:

(TPUP )(xP ;MP ) = sup
x′

P

{βuD(., .) + ΨD[N
m, uD(., .) + UP (x

′
P ;M

′
P ))]

x′
P s.t. [K ′ + θNm′

≤ F (K,Nm)]}.

The following Lemma states the standard dynamic programming result that TP has

a unique fixed point, Uo∗
P , which corresponds to the maximized value of the dynastic

sequence problem Uo∗∗
P in Definition S.4.

Lemma S.3 If Assumption S.2 holds and κνζ < 1, then TP : CP (ν) → CP (ν), CP (ν) is a

Banach space; TP is a contraction of modulus κνζ < 1 in CP (ν); there is a unique Uo∗
P ∈ CD(ν),

such that Uo∗
P = TPU

o∗
P ; if M

˜P agrees with MP and LP (.), then (Uo∗
P = TPU

o∗
P ) implies

(Uo∗
P = Uo∗∗

P ); and the associated policy correspondences K ′(xP ;MP ), N
m′

(xP ;MP ) are non-

empty, h.o.d. 1 in xP and u.h.c..
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The proof of Lemma S.3 is standard, except for the definition of “adding a constant to a

function” and the version of Blackwell’s sufficient conditions used.47 Next, we derive

important properties for the value function, U∗
P .

Lemma S.4 If Assumption S.2 is satisfied, then U∗
P is strictly increasing, strictly concave,

differentiable and homogeneous of degree ν in xP , and the associated policy correspondences are

single valued, continuous and homogeneous of degree 1.

Proof. For monotonicity, see Stokey, Lucas, and Prescott (1989), Theorem 4.7, p.80, and

for strict concavity, see Stokey, Lucas, and Prescott (1989), Theorem 4.8, p.81. Stated

briefly, since the constraint set is a convex cone and monotone and since uD is strictly

increasing and strictly concave while ΨD is strictly increasing and weakly concave, the

proofs go through exactly as long as the norm ||.||ν defined above and boundedness

condition in Assumption S.3 are used. To show differentiability is slightly more in-

volved but, as usual, the goal is to apply Benveniste-Scheinkman’s Envelope Theorem

(see Stokey, Lucas, and Prescott (1989), Theorem 4.10, p.84). First, the definition of B̃P

in equation (S.17) implies the following intra-temporal FOC (using only the differen-

tiability of uD and ΨD):

β
∂uD(C

o, No)

∂Co
=

∂ΨD(N
m, uD(C

m, Nm) + U∗
P (x

′∗
P ))

∂U

∂uD(C
m, Nm)

∂Cm
+ λB/MP(S.20)

where λB is the multiplier on the minimum transfer constraint. Note that U∗
D(x

′∗
D) and

U∗
P (x

′∗
P ) are just numbers here.

There are thus three cases: (xP , x
′

P (xP )) is such that (1) B̃P > bNm and λB = 0, (2)

B̃P = bNm and λB > 0, (3) B̃P = bNm and λB = 0.

For differentiability with respect to K and No, we can always construct a strictly

concave, differentiable function, G, that is equal to U∗
P at the current state and below

in a small interval around the optimal choice. The reason why this function can be

strictly concave and differentiable is because uD and ΨD are (strictly/weakly) concave

and differentiable by assumption. Since the minimum transfer constraint is unaffected

by K and No, we can hold B constant on this interval. The reason why for every point

around the current state the optimal choice for tomorrow’s state is still feasible is be-

cause Cm∗ > 0 and Co∗ > 0 since u′
D(0, N) = ∞. That is, we can adjust consumption to

accommodate the lower current state and still achieve the optimal choice for tomorrow.

47See Proposition 4’ in Alvarez (1994)), p. 40-41 and p. 65-67. The proof of this proposition used
Proposition 3, p. 26, and the proof of Proposition 4, p. 27.
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Given this, we can apply Benveniste-Scheinkman to deduce that U∗
P is differentiable in

K and No.

For differentiability with respect to Nm, the argument is slightly more involved. In

cases (1) and (2), we can use the same argument as above, except that we have to adjust

B in case (2) which is possible since consumption is strictly positive at an optimum as

above. So U∗
P is differentiable in the set of xP such that (1) or (2) holds. In case (3),

decreasing Nm brings us to case (1) and increasing Nm brings us to case (2). Hence,

we have to show that the derivatives in cases (1) and (2) are equal as we approach case

(3). Indeed, the only difference between the derivatives in case (1) and (2) is λB, which

approaches 0 as we approach case (3) from case (2). Hence, U∗
P is differentiable with

respect to Nm. See Technical Appendix T.4 for details.

That U∗
P is homogeneous of degree ν was shown in Lemma S.3. The properties of

the decision rules follow in the usual way from the properties of the value function.

S.4.2 Necessary and Sufficient Conditions for Optimality

Proposition S.2 If MP = FN , any sequence x
˜P0 ∈ ΠP (xP0) is optimal for the problem in

Definition S.4 if and only if it satisfies the intra-temporal allocation condition (S.21), the Euler

equations (S.22) and the transversality condition (S.23).

Intra-temporal allocation condition:

B : β
∂uD(C

o
t , N

o
t )

∂Co
t

=
∂ΨD(N

m
t , uD(C

m
t , Nm

t ) + U∗
Pt+1)

∂U

∂uD(C
m
t , Nm

t )

∂Cm
t

+ λB,t/FNt

(S.21)

Euler Equations:

K ′ :
∂uD(C

m
t , Nm

t )

∂Cm
t

= β
∂uD(C

o
t+1, N

o
t+1)

∂Co
t+1

FKt+1 (S.22)

Nm′

: θ
∂uD(C

m
t , Nm

t )

∂Cm
t

=
∂ΨD(N

m
t+1, uD(C

m
t+1, N

m
t+1) + U∗

Pt+2)

∂Nm
t+1

+
∂ΨD(N

m
t+1, uD(C

m
t+1, N

m
t+1) + U∗′

Pt+1)

∂U

∗

[
FNt+1

∂uD(C
m
t+1, N

m
t+1)

∂Cm
t+1

+
∂uD(C

m
t+1, N

m
t+1)

∂Nm
t+1

+ β
∂uD(C

o
t+2, N

o
t+2)

∂No
t+2

]

−λB,t+1bt+1
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Transversality condition

ζ t
[
∂uD(C

o∗
t , No

t )

∂Co∗
t

FKt(Kt + θNm
t ) +

∂uD(C
o∗
t , No

t )

∂No
t

No
t

]
→ 0 as t → ∞ (S.23)

Proof. For necessity of equations (S.21) to (S.23), we closely follow the arguments in

Alvarez (1994), Proposition 8. That is, suppose an allocation attains the sup in Def-

inition S.4, U∗∗
P (xP0) where U∗∗

P = U∗
P by Lemma S.3 and where B̃P (.) is defined in

equation (S.17). Then, by Lemma S.4, the first-order and envelope conditions can be

derived which lead to equations (S.21) and (S.22). To show that the transversality con-

dition must hold at an optimum, we first show that ζ tUo∗
P (x
˜Pt) → 0 as t → ∞. Using

the fact that Uo∗
P is h.o.d. ν and the envelope conditions and Euler equations, (S.23)

follows. For sufficiency of equations (S.21) to (S.23), we closely follow the proof of

Theorem 4.15 in Stokey, Lucas, and Prescott (1989), p. 98. The main difference is that

due to the recursively defined utility, we cannot write it as an infinite sum. However,

thanks to Assumption S.2(d) we show that ∂ΨD(Nm,U)
∂U

≤ ζ < 1 and since ζ tUo∗
P (x
˜Pt) → 0

as t → ∞, the result follows. For full details see Technical Appendix T.2.

Expressing the conditions in Proposition S.2 in per capita terms, using the relation-

ship between uD and u and ΨD and Ψ in equations (S.5), and the firm’s optimality

conditions, we get the necessary and sufficient conditions of the household problem in

the text (see Section 3.2). For algebra details see Technical Appendix T.3.

S.4.3 In an unconstrained equilibrium, rt+1θt > wt+1

Consider the optimality conditions in equations (S.21) and (S.22). If the equilibrium is

unconstrained, then λB,t+1 = 0. Substituting equation (S.21) and the first Euler equa-

tion in (S.22) into the second Euler equation in (S.22), substituting marginal products

for prices and rearranging terms, we get:

∂ΨD(.)

∂Nm∗
t+1

+
∂ΨD(.)

∂U

(
∂uD(C

m∗
t+1, N

m∗
t+1)

∂Nm∗
t+1

+
∂uD(C

o∗
t+2, N

o∗
t+2)

∂No∗
t+2

)
=

∂uD(C
o∗
t+1, N

o∗
t+1)

∂Co∗
t+1

(rt+1θt−wt+1).

The left-hand side is the marginal utility benefit of an additional child to the dynasty.

That is strictly positive by Assumption S.2. Hence, the right-hand side must be pos-

itive in equilibrium. Since uD is strictly increasing, we have that rt+1θt > wt+1 in an

unconstrained equilibrium.
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S.4.4 Equilibrium decision rules and prices are continuous in b

In this section, we show that household decision rules and prices are continuous in the

minimum transfer constraint, b. This result will be used in the proof of Propositions 4

and 6 below.

Proposition S.3 U∗
P is differentiable with respect to the parameter b and the Pseudo Planner’s

policy functions are continuous in b. Therefore, household policy functions and equilibrium

prices are continuous in b.

Proof. Add b as a state variable with law of motion b′ = b. We want to show that

U∗
P (xP ; b,MP ) differentiable in b. As usual, the goal is to apply Benveniste-Scheinkman’s

Envelope Theorem (see Stokey, Lucas, and Prescott (1989), Theorem 4.10, p.84). To do

so, define b∗ ∈ [−1, bmax] such that, given (KP , N
m
P , No

P ), we have B = Nm
P b∗ and

β
∂uD(o, xP , b

∗)

∂Co
=

∂ΨD(N
m
P , uD(m, xP , b

∗) + Uo∗
P (x

′

P (xP , b
∗)))

∂U

∂uD(m, xP , b
∗)

∂Cm
.

That is, the constraint just starts to bind at b∗ but λB = 0.48 There are three cases: given

(xP , x
′
P (xP , b)) (i) b < b∗ and λB = 0, (ii) b > b∗ and λB > 0, (iii) b = b∗ and λB = 0.

In case (i), we can always construct a strictly concave, differentiable function, G,

that is equal to U∗
P at b and below in a small interval around it. The reason why this

function can be strictly concave and differentiable is because uD and ΨD are (strictly/weakly)

concave and differentiable by assumption. Since the minimum transfer constraint is

still not binding in a small enough interval, we can hold B and the optimal choice

for tomorrow’s state at their values for b on this interval without violating any bud-

get constraints. Given this, we can apply Benveniste-Scheinkman to deduce that U∗
P is

differentiable in b in case (i) with
∂Uo∗

P
(xP ,b,MP )

∂b |i
= 0.

In case (ii), we can use the same argument as above, except that we have to adjust B.

The reason why for every point in a small enough interval around b the optimal choice

for tomorrow’s state is still feasible is because Cm∗ > 0 and Co∗ > 0 since u′
D(0, N) = ∞.

That is, we can adjust consumption to accommodate the higher minimum transfer

constraint and still achieve the optimal choice for tomorrow. So U∗
P is differentiable in

case (ii) with
∂Uo∗

P
(xP ,b,MP )

∂b |ii
= −MPN

m
P λB.

In case (iii), decreasing b brings us to case (i) and increasing b brings us to case

(ii). Hence, we have to show that the derivatives in cases (i) and (ii) are equal as we

approach case (iii). Indeed, λB approaches 0 as we approach case (iii) from case (ii).

48Note that b∗ exists if ∂ΨD/∂U > 0. If ∂ΨD/∂U = 0, only Case (ii) below is relevant.
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Hence, U∗
P is differentiable with respect to b. Thus U∗

P is continuous in b and by the

Theorem of the Maximum, the optimal policy functions, x′
P are continuous in b. Using

the relationships st+1 = KPt+1/N
m
Pt and nt = Nm

Pt+1/N
m
Pt, it follows that household

policy functions are also continuous in b. Since F is continuously differentiable, FK(.)

and FN(.) are continuous functions of xP . Therefore, equilibrium prices, w = FN (xP (b))

and r = FK(xP (b)), are also continuous in b. See Technical Appendix T.5 for details.

S.5 Recursive Competitive Equilibrium

The equilibrium described in Section 3.1.3 can also be written as a recursive competi-

tive equilibrium (RCE). For some applications, this formulation may be more intuitive

and convenient. We report it here for completeness: definition, equivalence result and

relation to the Pseudo-Planner’s problem.

Let X ⊆ R
2
+ be the household state space and let XD ⊆ R

3
+ be the dynastic or

aggregate state space.

Definition S.6 A Recursive Competitive Equilibrium (RCE) is a collection of:

• continuous price functions: w : XD → R++ and r : XD → R++,

• value functions: Uo∗ : X ×XD → R and Um∗ : X ×XD → R,

• household decision functions: co∗ : X ×XD → R+, b∗ : X ×XD → [b, b],

cm∗ : [b, b]×XD → R+, s∗
′

: [b, b]×XD → R+, n∗′ : [b, b]×XD → R+,

• firm decision rules: K̃∗ : XD ×XD → R+, Ñ∗ : XD ×XD → R+;

• laws of motion for the aggregate state variables: L : XD → XD ,

such that for all (x, x̂D) ∈ X ×XD :

• given w(x̂D), r(x̂D) and b, the decision rules cm∗(b, x̂D), s
∗′(b, x̂D) and n∗′(b, x̂D)

maximize u(cm) + Uo∗(s′, n′; x̂′D), subject to cm ≤ w(x̂D)(1 + b)− θn′ − s′

• given w(x̂D), r(x̂D), (s, n), the decision rules co∗(s, n; x̂D) and b∗(s, n; x̂D)

maximize βu(co) + Ψ(n,Um∗(b; x̂D)), subject to co ≤ r(x̂D)s− w(x̂D)nb

• Um∗(b, x̂D) = u(cm∗(b, x̂D)) + Uo∗(s∗
′

(b, x̂D), n
∗′(b, x̂D); x̂

′
D)

Uo∗(s, n; x̂D) = βu(co∗(s, n; x̂D)) + Ψ(n,Um∗(b∗(s, n; x̂D); x̂D))
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• given w(x̂D), r(x̂D), decision rules K̃∗(x̂D) and Ñ∗(x̂D)

maximize F (K̃, Ñ )− w(x̂D)Ñ − r(x̂D)K̃ ,

• markets clear:

N̂mcm∗(b∗(x̂, x̂D), x̂D) + N̂oco∗(x̂, x̂D) + N̂ms∗(b∗(x̂, x̂D), x̂D) + θN̂mn∗(b∗(x̂, x̂D), x̂D)

= F (K̃(x̂D), Ñ (x̂D)),

K̃∗(x̂D) = K̂ and Ñ∗(x̂D) = N̂m,

• consistency:

x̂ = (ŝ, n̂) = (K̂/N̂o, N̂m/N̂o)

K̂ ′ = L1(x̂D) = N̂ms∗
′

(b∗(x̂, x̂D); x̂D)

N̂m′

= L2(x̂D) = N̂mn∗′(b∗(x̂, x̂D); x̂D)

N̂o′ = L3(x̂D) = N̂m

N̂o
0 = 1, N̂m

0 = n0, K̂0 = k0 given.

The RCE formulation from Definition S.6 has two optimization problems, one for

old households and one for middle-aged households. The first order conditions and

the envelope condition for the old household problem are

b : βu′(co(s, n; x̂D))nw(x̂D) = ΨU(n, U
m(b; x̂D))

∂Um(b; x̂D)

∂b
+ λb

ECs :
∂Uo(s, n; x̂D)

∂s
= βu′(co(s, n; x̂D))r(x̂D)

ECn :
∂Uo(s, n; x̂D)

∂n
= Ψn(n, U

m∗(b; x̂D))− βu′(co(s, n; x̂D))bw(x̂D) .

Similarly, from the young household problem we have

n : u′(cm(b; x̂D))θ =
∂Uo(s∗

′

(b, x̂D), n
∗′(b, x̂D; x̂D)

∂n

s : u′(cm(b; x̂D)) =
∂Uo(s∗

′

(b, x̂D), n
∗′(b, x̂D); x̂D)

∂s

ECb :
∂Um(b; x̂D)

∂b
= u′(cm(b; x̂D))w(x̂D) .

Using the envelope conditions to substitute out for ∂Um(b;x̂D)
∂b

, ∂Uo(s,n;x̂D)
∂s

and ∂Uo(s,n;x̂D)
∂n

,
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and suppressing the arguments, we can write the necessary equilibrium conditions as:

n : u′(cm)θ + βu′(co
′

)b′w′ = Ψn

s : u′(cm) = βu′(co
′

)r′

b : βu′(co)n = ΨUu
′(cm) +

λb

w

Adding in the time indices, we obtain the FOCs in equations (6) to (8) in the main text.

While intuitive, this does not prove that these equations (together with the firm’s

optimality conditions and the budget constraints) are sufficient to characterize equilib-

ria. Since there are non-covexities in the constraint sets here, we set up an equivalent

Pseudo-Planner’s problem in Section S.4 which does not suffer from this problem and

derive sufficiency there.

Next, we show that the RCE is equivalent to the equilibrium described in the main

text. See also Figure S.1 for a graphical depiction of these equivalences.

Proposition S.4 The Recursive Competitive Equilibrium is equivalent to the equilibrium de-

fined in Section 3.1.3.

Outline of Proof. The proof proceeds as follows.

Step 1: From the RCE, we derive the Old Household Functional Equation (HFE, Defi-

nition S.7).

Step 2: From HFE, we derive the (equivalent) Dynastic Functional Equation (DFE,

Definition S.8).

Step 3: We then show that DFE has a unique fixed point, Uo∗
D which attains the supre-

mum of the Dynastic sequence problem (DSP) in Definition S.2, Uo∗∗
D (see Lemma S.5).

Step 4: Given (2) and (3) and Lemma S.1 (i.e. equivalence Old Household Sequence

Problem (HSP) in Definition S.1 and DSP in Definition S.2), we can show that the HFE

is equivalent to the HSP. In addition, since HSP was derived from the equilibrium

described in Section 3.1.3 and HFE was derived from the RCE, the household problems

in Section 3.1.3 and in the RCE are equivalent (see Corollary S.1).

Step 5: It then only remains to point out that the firm’s optimality conditions as well

as market clearing conditions coincide in the two equilibrium definitions.

Step 6 concludes.

Within this proof, we also state some definitions that will be used in subsequent sec-

tions and refer to similar proofs in Alvarez (1994).

Proof.
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Step 1: Derive Old Household Functional Equation

Using the same steps as in Section S.1 on Um and Uo from the RCE, we can write the

old household problem as a functional equation by defining the operator, T , as follows.

Definition S.7 Old Household FE (HFE):

Given a stationary law of motion for x̂′
D = L(x̂D), define the operator, T , as:

(TUo)(s, n; x̂) = sup
x′

{βu(r(x̂D)s−nb̃w(x̂D))+Ψ[n, u(w(x̂D)(1+b̃(.))−s′−θn′)+Uo(x′; x̂′
D)],

x′ s.t. [(s′ + θn′)n ≤ w(x̂D)n+ r(x̂D)s]}

Step 2: Derive Dynastic Functional Equation

Similarly, using the same steps as in Section S.2 on Uo and Uo
D, we can write the dynastic

problem as a functional equation by defining the operator, TD, as as follows

Definition S.8 Dynastic FE (DFE): Given a stationary law of motion for x̂′ = L(x̂), define

the operator, TD, as:

(TDU
o
D)(xD; x̂D) = sup

x′

D

{βuD(r(x̂D)S − B̃(.)w(x̂D), N
o)

+ΨD[N
m, uD(w(x̂D)(N

m+B̃(.))−S ′−θNm′

, Nm)+Uo
D(x

′
D, x̂

′
D); x̂

′
D)],

x′
D s.t. [S ′ + θNm′

≤ w(x̂D)N
m + r(x̂D)S]}

Step 3: The problem in Def. S.8 (DFE) is equivalent to the problem Def. S.2 (DSP).

The following Lemma states the standard dynamic programming result that TD has

a unique fixed point, Uo∗
D , which corresponds to the maximized value of the dynastic

sequence problem Uo∗∗
D in Definition S.2.

Let CD(ν) ≡ {F : XD ×XD → R : F is continuous, F is h.o.d. ν and ||F ||ν < ∞}

where ||F ||ν ≡ sup{(|F (xD)|/(||xD||E)
ν : xD ∈ XD ⊆ R

3}.

Lemma S.5 If Assumption S.2 holds and κνζ < 1, then:

1. TD : CD(ν) → CD(ν), CD(ν) is a Banach space,

2. TD is a contraction of modulus κνζ < 1 in CD(ν),

3. there is a unique Uo∗
D ∈ CD(ν), such that Uo∗

D = TDU
o∗
D ,

4. if (w
˜
, r
˜
) agrees with (w(x̂), r(x̂)), then

Uo∗
D = TDU

o∗
D implies Uo∗

D = Uo∗∗
D .
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5. And the associated policy correspondences S ′(xD; x̂D), N
m′

(xD; x̂D) are non-empty, h.o.d.

1 in xD and u.h.c..

The proof of Lemma S.5 is standard.49

Step 4: The problem in Def. S.8 (DFE) is equivalent to the problem in Def. S.7 (HFE).

The next Corollary states that T has a unique fixed point, Uo∗, which corresponds to

the maximized value of the old household sequence problem, Uo∗∗, in Definition S.1.

Let C (ν) ≡ {f : X → R : f is continuous and F (x, 1) ≡ f(x), ||F ||ν < ∞}

where ||F ||ν ≡ sup{(|F (x, 1)|/(||(x, 1)||E)
ν : x ∈ X ⊆ R

2}.

Corollary S.1 If Assumption S.2 holds, κ > 0 and κνζ < 1, then

1. T : C (ν) → C (ν), C (ν) is a Banach space,

2. T is a contraction in C (ν),

3. there is a unique Uo∗ ∈ C (ν), such that Uo∗ = TUo∗,

4. Uo∗ = TUo∗ implies Uo∗ = Uo∗∗.

5. And the associated policy correspondences s∗(x; x̂D), n
∗(x; x̂D) are non-empty, h.o.d. 1

in x and u.h.c..

The proof of Corollary S.1 is simple once one has shown the equivalence of T and TD.

This can be done very similarly to Step 2 in the proof of Proposition S.1.50

Step 5: The firm’s optimality conditions and the market clearing conditions are the

same in the definition of equilibrium in Section 3.1.3 and in the definition of the RCE.

Step 6: Equivalence between equilibrium in Section 3.1.3 and the RCE.

From Step 4, since HSP was derived from the equilibrium described in Section 3.1.3

and HFE was derived from the RCE, the household problems in Section 3.1.3 and in

the RCE are equivalent. From Step 5, the firms optimality conditions as well as market

clearing conditions coincide in the two equilibrium definitions. Hence, the equilibria

are equivalent.

To solve for the RCE, one can use the solution to the Pseudo-Planner’s problem.

The next Proposition states this relationship:

49See Proposition 4’ in Alvarez (1994)), p. 40-41 and p. 65-67.
50See Propositions 5, 5’ and Corollary in Alvarez (1994), p.41 and p. 61-62.
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Proposition S.5 If x∗
P (xP ) = (K∗

P (xP ), N
m∗
P (xP ), N

m∗
P (xP )) solves the Pseudo Planner’s

problem with Lp(MP (xP )) = FN(L1(xP ), L2(xP )) where MP (xP ) = FN (K,Nm) and letting

x̂ = xP , x = (KP , N
m
P )/No, b = B/Nm, where B = B̃(.), then

1. the RCE allocation is given by:

• w(x̂) = FN (xP ), r(x̂) = FK(xP ),

• co(X ; x̂) = [F (K,Nm)− (Nm + B̃P )]/N
o
P , c

m(b; x̂) = C̃m
P (xP )/N

m,

s∗(b; x̂) = K∗
P (xP )/N

m
P , n∗(b; x̂) = Nm∗

P (xP )/N
m
P ,

• Uo∗(X ; x̂) = U∗
P (xP , FN(xP ))/(N

o)ν ,

Um∗(b; x̂) = u(cm(b; x̂)) + Uo∗(x∗
P (xP )/N

m, x∗
P (xP )),

• K̃(x̂) = KP , Ñ(x̂) = Nm
P ,

• L1(x̂) = K∗
P (xP ), L2(x̂) = Nm∗

P (xP ), L3(x̂) = Nm
P ;

2. since F is continuously differentiable, FK(.) and FN(.) are continuous functions of xP .

Hence, we have found prices w(.) and r(.) which are continuous functions of x̂, a result

we use in Section S.4.4 and Appendix A in the main text;

3. equations (S.21), (S.22) and (S.23) correspond to equations (6) to (8) and (11) in the

main text and—together with budget constraints and firm’s optimality conditions—the

latter are necessary and sufficient to characterize the equilibrium.

Proof. Use equivalences in the proof of Proposition S.4 and Lemma S.2.
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