Polygyny, Women's Rights and Development

Michèle Tertilt Stanford University September 2005

Motivation

- Many Sub-Saharan African countries are extremely poor.
- This paper: polygyny is one reason for lack of development.

Why?

- Polygyny requires a positive brideprice to ration women.
 - \rightarrow Makes children a good investment.
 - \rightarrow Men want many women and many children.
- Investment in women crowds out investment in physical capital.
 - \rightarrow Low $\frac{K}{Y}$ and high population growth.
 - \rightarrow Low GDP per capita.

Outline of the Talk

- 1. Data
- 2. The model (polygyny & monogamy)
- 3. Calibration & numerical results:

If countries in SSA banned polygyny, then

- Brideprices would change from positive to negative.
- Fertility would fall by 70%.
- Savings rate would increase by 35%.
- GDP p.c. would increase by 170%.
- 4. Extension: More Rights for Women

Some Facts about Polygyny

- 28 countries in Sub-Saharan Africa with more than 10% married men in polygynous union. Range: 10.2%-55.6%. Average: 24%.
- Average number of wives per married man > 1, as high as 1.7.
- Almost all men get married: 95%+, average: 97.3%.
- Possible because of high age gap and growing population size.
 Example: 10 year age gap, annual population growth 3%
 ⇒ makes average of 1.34 wives per man possible.

In this talk:

Abstract from heterogeneity

Polygynous vs. Monogamous Countries (||atitude| < 20)

	Polygyny	Monogamy
TFR 1980	6.78	4.62
Surviving 5 yrs. 1980	5.01	3.57
Male age at first marriage	26.2	27.8
Female age at first marriage	19.9	25.0
Age gap	6.4	2.8
$\frac{I}{Y}$ 1960-85	0.09	0.16
$\frac{s}{GNP}$ 1960-85	0.128	0.194
$\frac{K}{Y}$ 1985	1.1	1.9
GDP per capita, 1985	975	2,798

Sub-Saharan Africa

	High Polygyny	Low Polygyny
TFR 1980	6.78	$5.97^{*}*$
Surviving 5 yrs. 1980	5.01	4.57^{*}
IMR 1980	12.2	11.5
CMR 1980	19.4	18.3
Male age at first marriage	26.2	26.6
Female age at first marriage	19.9	22.7^{***}
Age gap	6.4	3.9^{***}
$\frac{I}{Y}$ 1960-85	8.7	14.3**
$\frac{K}{Y}$ 1980	1.1	1.6^{*}
GDP per capita, 1980	975	$1,\!574^{*}$

Brideprice and Polygyny

Hartung 1982

	Brideprice ≤ 0		Brideprice > 0	
No polygyny	70	(62.5%)	42	(37.5%)
limited polygyny (< 20%)	137	(47.2%)	153	(52.8%)
general $(> 20\%)$	41	(9.2%)	407	(90.8%)

The Environment

- Overlapping generations GE model
- Agents differ by sex
- Agents live for 3 periods: child, young adult, old adult
- Children don't make choices
- Child Production
 - Inputs: fertile women & consumption good
 - Women are fertile only as young adults
- Market for wives: fathers sell daughters
- Cobb-Douglas production function
- Young adults supply one unit of labor inelastically

Utility of a Man

$$U = \ln c^y + \beta \ln c^o + \gamma \ln(f^y + f^o)$$

Subscripts: y, o specify age of a man

"Child Production"

- Only young adult women are fecund.
- Men can have children in both adult periods, if they have a fecund wife.
- Husband and wife share cost of child-rearing equally.
- If a woman has f children, the total cost is $2\epsilon f^2$ during the period in which she gives birth.
- Suppose an age *i* man has f^i children and n^i fecund wives $\rightarrow \frac{f^i}{n^i}$ children per (fecund) wife \rightarrow total cost: $\epsilon \left(\frac{f^i}{n^i}\right)^2 n^i$.

Marriage

- Competitive market for brides (= young adult women)
- Brideprice: p
- Young and old men buy wives
- Fathers sell daughters

Brideprices

- There is a cost, *a*, per daughter who remains unmarried after the father's death, to capture the following:
 - Unmarried daughters cannot bear grand-children
 - Cost of protecting her virginity
 - She would be without protector after father dies and therefore not have access to land and property
- This assures that fathers are willing to marry their daughters even if p < 0.
- Note: a utility cost leads to similar results.

Man's Problem

 $\begin{aligned} \max_{c,s,n,f,d} \ln(c^y) + \beta \ln(c^o) + \gamma \ln(f^y + f^o) \\ s.t. \ c^y + s^y + pn^y + \epsilon \frac{(f^y)^2}{n^y} \le w \\ c^o + s^o + pn^o + \epsilon \frac{(f^o)^2}{n^o} \le Rs^y + pd^y \\ a(\frac{f^y + f^o}{2} - d^y - d^o) \le Rs^o + pd^o \\ d^y \le \frac{f^y}{2}, \ d^o \le \frac{f^o}{2} \end{aligned}$

non-negativity constraints

Monogamy

Additional constraint on man's problem:

$$n^y + n^o \le 1$$

Woman's Problem

- Women obey their husband's fertility decisions.
- Problem of a married woman whose husband wants \bar{f} children:

$$\max_{c^{y}, c^{o}, s} \ln(c^{y}) + \beta \ln(c^{o}) + \gamma \ln(\bar{f})$$

s.t. $c^{y} + s + \epsilon \bar{f}^{2} \le w$
 $c^{o} \le Rs$

• Unmarried women: $\bar{f} = 0$.

Production

$$Y_t = AK_t^{\alpha} L_t^{1-\alpha}$$

Let M_t be # young adult men at time t.

$$L_t = 2M_t$$

$$K_t = (s_y^m + s_y^f)M_t + s_o^m M_{t-1}$$

Optimization: w = MPL and r = MPK

Equilibrium

- Men and women maximize their utility
- Profit maximization
- Markets for capital and labor clear
- Bride market clears: $d^{y}M_{t-1} + d^{o}M_{t-2} = n^{y}M_{t} + n^{o}M_{t-1}$
- Population dynamics: $M_{t+1} = \frac{1}{2} [M_t f^y + M_{t-1} f^o]$

$$\implies \frac{M_t}{M_{t+1}}n^o + n^y \le 1$$

Comparative Statics in Marriage System: 2 Propositions

Proposition 1 (Polygyny):

When polygyny is allowed, then any BGP has the following characteristics:

- 1. p > 0
- 2. Men marry and have children when old $(n^o > 0, f^o > 0)$.
- 3. There is an age gap between husband and wife.
- 4. All daughters marry $(d^y = 0, d^o = \frac{f^o}{2})$.
- 5. Net interest rates are positive $r \delta > 0$.

Fertility and Savings

- Effective marginal cost of an extra child low under polygyny because p > 0 acts like child-rearing subsidy.
- Savings low under polygyny:
 - Brides are an alternative asset.
 - \rightarrow crowds out investment in physical capital.

Proposition 2 (Monogamy):

- 1. If there is a BGP with positive population growth in which all women marry, then there is no spousal age gap $(f^y > 0, n^y = 1, f^o = n^o = 0)$ and $p \ge -a$.
- 2. If there is a BGP with positive population growth in which some women remain unmarried, then there is a spousal age gap $(f^o > 0, n^o = 1, f^y = n^y = 0)$, the fraction of unmarried women is $\frac{\eta - 1}{\eta}$, and p = -a.

Calibrating the Polygynous Economy

Model period = 15 years normalize GDP p.c. to 975

Parameter	Value	calibrated s.t.
β	0.46	annual discount factor $= 0.95$
α	0.4	income share of capital = 40%
γ	0.58	surviving $\#$ kids = 5.01
ϵ	44	$\frac{S}{Y} = 13\%$
δ	0.66	annual depreciation rate = 7%

Note: a is irrelevant for the polygynous BGP and hence cannot be calibrated. I therefore assume it is large enough to not be binding. \rightarrow rules out case 2 under monogamy.

Model's Predictions

	Polygyny	Monogamy	Monogamy
	Model & Data	Model	Data
Surviving fertility	5.01	2.91	3.57
Savings rate	0.13	0.22	0.19
GDP per capita	975	$2,\!648$	2,798

Equilibrium Demographics

	Polygyny Model Data		Monogamy	
			Model	Data
Wives per man	2.5	1.34	1	1
Age gap	15	6.4	0	2.8
Annual population growth	6.3%	2.7%	2.5%	2.2%

Alternative Policy?

- So far: Banning polygyny increases GDP.
- Monogamy is hard to enforce (many countries have tried)
- Alternative policy?
- Extension: More Rights for Women/Daughters \rightarrow Analyze a model where daughters choose their own husband.
- Main finding: GDP p.c. \uparrow , but less.

Polygyny Laws in Countries with high Polygyny

Law	Countries	Rate
Legal	Cameroon, Republic of the Congo, Ghana, Kenya	
	Kuwait, Malawi, Mauritania Niger, Nigeria, Sierra Leone	22%
	South Africa, Sudan, Swaziland, Uganda	
Restr.	Bangladesh, Benin, Botswana, Burkina Faso, Central	
	African Republic, Chad Gabon, Libya, Mali, Mozambique	26%
	Senegal, Somalia, Tanzania, Zambia	
Illegal	Angola, Burundi, Democratic Republic of the Congo	
	Cote d'Ivoire, Equatorial, Guinea, Ethiopia, Gambia	27%
	Guinea, Liberia, Madagascar, Mayotte, Togo	

Measure of Women's Rights	High Polygyny	Monogamous
		Latitude < 20
abortion policy, 2005	1.4	1.7
Year of complete women's suffrage	1960	1952
Year first women in parliament	1970	1965
Female seats in parliament, 2004	12.6%	14.1%
female/male literacy, 2000	0.66	0.95
% female in secondary educ., 2000	40	49
adult female/male mortality, 2000	0.83	0.68
% of HIV infected who is female	57%	36%
Mean marriage age (women), 2000	19.9	24.4
GDI, 2003	0.42	0.70
GEM, 2003	0.22	0.50

New Marriage Market

- Market for brides
- Modification: daughters sell themselves.
- Young (y) and old (o) men buy young women.
- Brideprice: $p^i, i = y, o$
- Contrast results to model where fathers sell daughters.

Analytical Results

Proposition 1 Any BGP when polygyny is allowed has the following properties:

1. $p^{y}, p^{o} > 0$ 2. $n^{y} = 0, n^{o} > 0$ and $I^{y} = 0, I^{o} = 1$. 3. $n^{o} = \frac{M_{t}}{M_{t-1}} = \sqrt{\frac{f^{o}}{2}}$

Notes:

- 1. Monogamy: p < 0
- 2. Monogamy: men marry and have children young.
- 3. Overall, this policy does not affect family structure as much as banning polygyny.

Women's Rights – Numerical Results

	Fathers "o	wn" daughters	Daughters choose
Marriage System	Polygyny Monogamy		Polygyny
Children per woman	5.01	2.91	4.44
Number of wives per man	2.51	1	2.22
Savings rate as $\%$ of GDP	13%	22%	21%
GDP per capita	975	$2,\!648$	1,570

Summary

- Polygyny \rightarrow Brideprice > 0
 - \rightarrow affects incentives to save and have children
- Enforcing monogamy would
 - decrease fertility by 40%
 - increase savings rate by 60%
 - increase GDP p.c. by 170%
- These numbers seem reasonable, given the empirical differences between polygynous and monogamous countries.
- More Rights for Women might also help development.
- Open question: Why do some countries ban polygyny and others don't?

Why Does Small Differences in $\frac{S}{Y}$ Translate into Large GDP p.c. Differences?

Pol.	Mon.	$\frac{Mon}{Pol}$
0.14	0.19	1.36
2.5	1.45	0.57
0.064	0.172	2.69
4,030	7,780	1.9
3.9	3.1	0.8
1,029	$2,\!458$	2.4
	Pol. 0.14 2.5 0.064 4,030 3.9 1,029	Pol.Mon.0.140.192.51.450.0640.1724,0307,7803.93.11,0292,458